Update README.md

This commit is contained in:
Geralt_of_Rivia 2024-04-12 08:28:07 +08:00 committed by GitHub
parent 504d25f8eb
commit 47294e599f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -57,7 +57,9 @@ In our environment, we use pytorch=1.13.1+cu116.
The dataset provided in [D-NeRF](https://github.com/albertpumarola/D-NeRF) is used. You can download the dataset from [dropbox](https://www.dropbox.com/s/0bf6fl0ye2vz3vr/data.zip?dl=0).
**For real dynamic scenes:**
The dataset provided in [HyperNeRF](https://github.com/google/hypernerf) is used. You can download scenes from [Hypernerf Dataset](https://github.com/google/hypernerf/releases/tag/v0.1) and organize them as [Nerfies](https://github.com/google/nerfies#datasets). Meanwhile, [Plenoptic Dataset](https://github.com/facebookresearch/Neural_3D_Video) could be downloaded from their official websites. To save the memory, you should extract the frames of each video and then organize your dataset as follows.
The dataset provided in [HyperNeRF](https://github.com/google/hypernerf) is used. You can download scenes from [Hypernerf Dataset](https://github.com/google/hypernerf/releases/tag/v0.1) and organize them as [Nerfies](https://github.com/google/nerfies#datasets).
Meanwhile, [Plenoptic Dataset](https://github.com/facebookresearch/Neural_3D_Video) could be downloaded from their official websites. To save the memory, you should extract the frames of each video and then organize your dataset as follows.
```
├── data
@ -105,17 +107,19 @@ python scripts/downsample_point.py data/dynerf/cut_roasted_beef/colmap/dense/wor
# Finally, train.
python train.py -s data/dynerf/cut_roasted_beef --port 6017 --expname "dynerf/cut_roasted_beef" --configs arguments/dynerf/cut_roasted_beef.py
```
For training hypernerf scenes such as `virg/broom`, run
For training hypernerf scenes such as `virg/broom`: Pregenerated point clouds by COLMAP are provided [here](https://drive.google.com/file/d/1fUHiSgimVjVQZ2OOzTFtz02E9EqCoWr5/view). Just download them and put them in to correspond folder, and you can skip the former two steps. Also, you can run the commands directly.
```python
# First, computing dense point clouds by COLMAP
bash colmap.sh data/hypernerf/virg/broom2 hypernerf
# Second, downsample the point clouds generated in the first step.
# Second, downsample the point clouds generated in the first step.
python scripts/downsample_point.py data/hypernerf/virg/broom2/colmap/dense/workspace/fused.ply data/hypernerf/virg/broom2/points3D_downsample2.ply
# Finally, train.
python train.py -s data/hypernerf/virg/broom2/ --port 6017 --expname "hypernerf/broom2" --configs arguments/hypernerf/broom2.py
```
For your custom datasets, install nerfstudio and follow their colmap pipeline.
For your custom datasets, install nerfstudio and follow their [COLMAP](https://colmap.github.io/) pipeline. You should install COLMAP at first, then:
```python
pip install nerfstudio