Merge pull request #87 from hustvl/latest

Latest
This commit is contained in:
Geralt_of_Rivia 2024-02-27 17:36:05 +08:00 committed by GitHub
commit 535912c17b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 75 additions and 26 deletions

View File

@ -1,29 +1,37 @@
# 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering
## ArXiv Preprint
## CVPR 2024
### [Project Page](https://guanjunwu.github.io/4dgs/index.html)| [arXiv Paper](https://arxiv.org/abs/2310.08528)
[Guanjun Wu](https://guanjunwu.github.io/) <sup>1*</sup>, [Taoran Yi](https://github.com/taoranyi) <sup>2*</sup>,
[Jiemin Fang](https://jaminfong.cn/) <sup>3‡</sup>, [Lingxi Xie](http://lingxixie.com/) <sup>3 </sup>, </br>[Xiaopeng Zhang](https://scholar.google.com/citations?user=Ud6aBAcAAAAJ&hl=zh-CN) <sup>3 </sup>, [Wei Wei](https://www.eric-weiwei.com/) <sup>1 </sup>,[Wenyu Liu](http://eic.hust.edu.cn/professor/liuwenyu/) <sup>2 </sup>, [Qi Tian](https://www.qitian1987.com/) <sup>3 </sup> , [Xinggang Wang](https://xwcv.github.io) <sup>2‡✉</sup>
[Guanjun Wu](https://guanjunwu.github.io/)<sup>1*</sup>, [Taoran Yi](https://github.com/taoranyi)<sup>2*</sup>,
[Jiemin Fang](https://jaminfong.cn/)<sup>3‡</sup>, [Lingxi Xie](http://lingxixie.com/)<sup>3</sup>, </br>[Xiaopeng Zhang](https://scholar.google.com/citations?user=Ud6aBAcAAAAJ&hl=zh-CN)<sup>3</sup>, [Wei Wei](https://www.eric-weiwei.com/)<sup>1</sup>,[Wenyu Liu](http://eic.hust.edu.cn/professor/liuwenyu/)<sup>2</sup>, [Qi Tian](https://www.qitian1987.com/)<sup>3</sup> , [Xinggang Wang](https://xwcv.github.io)<sup>2‡✉</sup>
<sup>1 </sup>School of CS, HUST &emsp; <sup>2 </sup>School of EIC, HUST &emsp; <sup>3 </sup>Huawei Inc. &emsp;
<sup>1</sup>School of CS, HUST &emsp; <sup>2</sup>School of EIC, HUST &emsp; <sup>3</sup>Huawei Inc. &emsp;
<sup>\*</sup> Equal Contributions. <sup>$\ddagger$</sup> Project Lead. <sup></sup> Corresponding Author.
<sup>\*</sup> Equal Contributions. <sup>$\ddagger$</sup> Project Lead. <sup></sup> Corresponding Author.
---
---------------------------------------------------
![block](assets/teaserfig.jpg)
![block](assets/teaserfig.jpg)
Our method converges very quickly and achieves real-time rendering speed.
Colab demo:[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hustvl/4DGaussians/blob/master/4DGaussians.ipynb) (Thanks [camenduru](https://github.com/camenduru/4DGaussians-colab).)
New Colab demo:[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1wz0D5Y9egAlcxXy8YO9UmpQ9oH51R7OW?usp=sharing) (Thanks [Tasmay-Tibrewal
](https://github.com/Tasmay-Tibrewal))
Old Colab demo:[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hustvl/4DGaussians/blob/master/4DGaussians.ipynb) (Thanks [camenduru](https://github.com/camenduru/4DGaussians-colab).)
Light Gaussian implementation: [This link](https://github.com/pablodawson/4DGaussians) (Thanks [pablodawson](https://github.com/pablodawson))
## News
2024.02: Accepted by CVPR 2024. We delete some logging settings for debugging, the corrected training time is only **8 mins** (20 mins before) in D-NeRF datasets and **30 mins** (1 hour before) in HyperNeRF datasets. The rendering quality is not affected.
## Environmental Setups
Please follow the [3D-GS](https://github.com/graphdeco-inria/gaussian-splatting) to install the relative packages.
```bash
git clone https://github.com/hustvl/4DGaussians
cd 4DGaussians
@ -35,13 +43,17 @@ pip install -r requirements.txt
pip install -e submodules/depth-diff-gaussian-rasterization
pip install -e submodules/simple-knn
```
In our environment, we use pytorch=1.13.1+cu116.
## Data Preparation
**For synthetic scenes:**
**For synthetic scenes:**
The dataset provided in [D-NeRF](https://github.com/albertpumarola/D-NeRF) is used. You can download the dataset from [dropbox](https://www.dropbox.com/s/0bf6fl0ye2vz3vr/data.zip?dl=0).
**For real dynamic scenes:**
**For real dynamic scenes:**
The dataset provided in [HyperNeRF](https://github.com/google/hypernerf) is used. You can download scenes from [Hypernerf Dataset](https://github.com/google/hypernerf/releases/tag/v0.1) and organize them as [Nerfies](https://github.com/google/nerfies#datasets). Meanwhile, [Plenoptic Dataset](https://github.com/facebookresearch/Neural_3D_Video) could be downloaded from their official websites. To save the memory, you should extract the frames of each video and then organize your dataset as follows.
```
├── data
│ | dnerf
@ -69,46 +81,56 @@ The dataset provided in [HyperNeRF](https://github.com/google/hypernerf) is used
| ├── ...
```
## Training
For training synthetic scenes such as `bouncingballs`, run
```
For training synthetic scenes such as `bouncingballs`, run
```
python train.py -s data/dnerf/bouncingballs --port 6017 --expname "dnerf/bouncingballs" --configs arguments/dnerf/bouncingballs.py
```
```
You can customize your training config through the config files.
# Checkpoint
Checkpoint
Also, you can training your model with checkpoint.
```python
python train.py -s data/dnerf/bouncingballs --port 6017 --expname "dnerf/bouncingballs" --configs arguments/dnerf/bouncingballs.py --checkpoint_iterations 200 # change it.
```
Then load checkpoint with:
```python
python train.py -s data/dnerf/bouncingballs --port 6017 --expname "dnerf/bouncingballs" --configs arguments/dnerf/bouncingballs.py --start_checkpoint "output/dnerf/bouncingballs/chkpnt_coarse_200.pth"
# finestage: --start_checkpoint "output/dnerf/bouncingballs/chkpnt_fine_200.pth"
```
## Rendering
Run the following script to render the images.
Run the following script to render the images.
```
python render.py --model_path "output/dnerf/bouncingballs/" --skip_train --configs arguments/dnerf/bouncingballs.py &
```
## Evaluation
You can just run the following script to evaluate the model.
You can just run the following script to evaluate the model.
```
python metrics.py --model_path "output/dnerf/bouncingballs/"
```
## Custom Datasets
Install nerfstudio and follow their colmap pipeline.
```
pip install nerfstudio
ns-process-data images --data data/your-data --output-dir data/your-ns-data
python train.py -s data/your-ns-data --port 6017 --expname "custom" --configs arguments/hypernerf/default.py
cp -r data/your-ns-data/images data/your-ns-data/colmap/images
python train.py -s data/your-ns-data/colmap --port 6017 --expname "custom" --configs arguments/hypernerf/default.py
```
@ -120,6 +142,7 @@ There are some helpful scripts in , please feel free to use them.
get all points clouds at each timestamps.
usage:
```python
export exp_name="hypernerf"
python vis_point.py --model_path output/$exp_name/interp/aleks-teapot --configs arguments/$exp_name/default.py
@ -132,6 +155,7 @@ visualize the weight of Multi-resolution HexPlane module.
`merge_many_4dgs.py`:
merge your trained 4dgs.
usage:
```python
export exp_name="dynerf"
python merge_many_4dgs.py --model_path output/$exp_name/sear_steak
@ -139,6 +163,7 @@ python merge_many_4dgs.py --model_path output/$exp_name/sear_steak
`colmap.sh`:
generate point clouds from input data
```bash
bash colmap.sh data/hypernerf/virg/vrig-chicken hypernerf
bash colmap.sh data/dynerf/sear_steak llff
@ -147,26 +172,50 @@ bash colmap.sh data/dynerf/sear_steak llff
**Blender** format seems doesn't work. Welcome to raise a pull request to fix it.
`downsample_point.py` :downsample generated point clouds by sfm.
```python
python scripts/downsample_point.py data/dynerf/sear_steak/colmap/dense/workspace/fused.ply data/dynerf/sear_steak/points3D_downsample2.ply
```
In my paper, I always use `colmap.sh` to generate dense point clouds and downsample it to less than 40000 points.
Here are some codes maybe useful but never adopted in my paper, you can also try it.
## Further works
We sincerely thank the authors and their fantastic works for other applications based on our code.
[MD-Splatting: Learning Metric Deformation from 4D Gaussians in Highly Deformable Scenes](https://md-splatting.github.io/)
[4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency](https://vita-group.github.io/4DGen/)
[DreamGaussian4D: Generative 4D Gaussian Splatting](https://github.com/jiawei-ren/dreamgaussian4d)
[EndoGaussian: Real-time Gaussian Splatting for Dynamic Endoscopic Scene Reconstruction](https://github.com/yifliu3/EndoGaussian)
[EndoGS: Deformable Endoscopic Tissues Reconstruction with Gaussian Splatting](https://github.com/HKU-MedAI/EndoGS)
[Endo-4DGS: Endoscopic Monocular Scene Reconstruction with 4D Gaussian Splatting](https://arxiv.org/abs/2401.16416)
---
## Contributions
**This project is still under development. Please feel free to raise issues or submit pull requests to contribute to our codebase.**
---
Some source code of ours is borrowed from [3DGS](https://github.com/graphdeco-inria/gaussian-splatting), [k-planes](https://github.com/Giodiro/kplanes_nerfstudio),[HexPlane](https://github.com/Caoang327/HexPlane), [TiNeuVox](https://github.com/hustvl/TiNeuVox). We sincerely appreciate the excellent works of these authors.
## Acknowledgement
We would like to express our sincere gratitude to [@zhouzhenghong-gt](https://github.com/zhouzhenghong-gt/) for his revisions to our code and discussions on the content of our paper.
## Citation
Some insights about neural voxel grids and dynamic scenes reconstruction originate from [TiNeuVox](https://github.com/hustvl/TiNeuVox). If you find this repository/work helpful in your research, welcome to cite these papers and give a ⭐.
Some insights about neural voxel grids and dynamic scenes reconstruction originate from [TiNeuVox](https://github.com/hustvl/TiNeuVox). If you find this repository/work helpful in your research, welcome to cite these papers and give a ⭐.
```
@article{wu20234dgaussians,
title={4D Gaussian Splatting for Real-Time Dynamic Scene Rendering},

View File

@ -11,7 +11,7 @@ OptimizationParams = dict(
iterations = 20000,
pruning_interval = 8000,
percent_dense = 0.01,
render_process=True,
render_process=False,
# no_do=False,
# no_dshs=False

View File

@ -11,7 +11,7 @@ ModelHiddenParams = dict(
plane_tv_weight = 0.0002,
time_smoothness_weight = 0.001,
l1_time_planes = 0.0001,
render_process=True
render_process=False
)
OptimizationParams = dict(
# dataloader=True,

@ -1 +1 @@
Subproject commit e49506654e8e11ed8a62d22bcb693e943fdecacf
Subproject commit f2d8fa9921ea9a6cb9ac1c33a34ebd1b11510657

View File

@ -403,8 +403,8 @@ if __name__ == "__main__":
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[500*i for i in range(100)])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[1000, 3000, 4000, 5000, 6000, 7_000, 9000, 10000, 12000, 14000, 20000, 30_000, 45000, 60000])
parser.add_argument("--test_iterations", nargs="+", type=int, default=[3000,14000,20000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[3000,14000,20000, 30_000, 45000, 60000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)