commit
54f4eaef75
29
arguments/dycheck/default.py
Normal file
29
arguments/dycheck/default.py
Normal file
@ -0,0 +1,29 @@
|
||||
ModelHiddenParams = dict(
|
||||
kplanes_config = {
|
||||
'grid_dimensions': 2,
|
||||
'input_coordinate_dim': 4,
|
||||
'output_coordinate_dim': 16,
|
||||
'resolution': [64, 64, 64, 150]
|
||||
},
|
||||
multires = [1,2,4],
|
||||
defor_depth = 1,
|
||||
net_width = 128,
|
||||
plane_tv_weight = 0.0002,
|
||||
time_smoothness_weight = 0.001,
|
||||
l1_time_planes = 0.0001,
|
||||
render_process=True
|
||||
)
|
||||
OptimizationParams = dict(
|
||||
# dataloader=True,
|
||||
iterations = 60_000,
|
||||
batch_size=2,
|
||||
coarse_iterations = 3000,
|
||||
densify_until_iter = 10_000,
|
||||
opacity_reset_interval = 300000,
|
||||
# grid_lr_init = 0.0016,
|
||||
# grid_lr_final = 16,
|
||||
# opacity_threshold_coarse = 0.005,
|
||||
# opacity_threshold_fine_init = 0.005,
|
||||
# opacity_threshold_fine_after = 0.005,
|
||||
# pruning_interval = 2000
|
||||
)
|
||||
@ -1,4 +1,5 @@
|
||||
_base_ = './default.py'
|
||||
OptimizationParams = dict(
|
||||
batch_size=2,
|
||||
|
||||
)
|
||||
@ -1,4 +1,4 @@
|
||||
_base_ = './default.py'
|
||||
OptimizationParams = dict(
|
||||
|
||||
batch_size=2,
|
||||
)
|
||||
@ -21,11 +21,11 @@ ModelHiddenParams = dict(
|
||||
)
|
||||
OptimizationParams = dict(
|
||||
dataloader=True,
|
||||
iterations = 15000,
|
||||
batch_size=1,
|
||||
iterations = 14000,
|
||||
batch_size=4,
|
||||
coarse_iterations = 3000,
|
||||
densify_until_iter = 10_000,
|
||||
# opacity_reset_interval = 60000,
|
||||
opacity_reset_interval = 60000,
|
||||
opacity_threshold_coarse = 0.005,
|
||||
opacity_threshold_fine_init = 0.005,
|
||||
opacity_threshold_fine_after = 0.005,
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
_base_ = './default.py'
|
||||
OptimizationParams = dict(
|
||||
batch_size=2,
|
||||
|
||||
)
|
||||
@ -1,4 +1,4 @@
|
||||
_base_ = './default.py'
|
||||
OptimizationParams = dict(
|
||||
|
||||
batch_size=2,
|
||||
)
|
||||
@ -11,7 +11,7 @@ ModelHiddenParams = dict(
|
||||
plane_tv_weight = 0.0002,
|
||||
time_smoothness_weight = 0.001,
|
||||
l1_time_planes = 0.0001,
|
||||
render_process=False
|
||||
render_process=True
|
||||
)
|
||||
OptimizationParams = dict(
|
||||
# dataloader=True,
|
||||
|
||||
@ -24,7 +24,7 @@ class Deformation(nn.Module):
|
||||
self.grid_pe = grid_pe
|
||||
self.no_grid = args.no_grid
|
||||
self.grid = HexPlaneField(args.bounds, args.kplanes_config, args.multires)
|
||||
|
||||
# breakpoint()
|
||||
self.args = args
|
||||
# self.args.empty_voxel=True
|
||||
if self.args.empty_voxel:
|
||||
|
||||
@ -103,8 +103,9 @@ class Load_hyper_data(Dataset):
|
||||
self.image_mask = [f'{datadir}/covisible/{int(2)}x/val/{i}.png' for i in self.all_img_origin]
|
||||
else:
|
||||
self.image_mask = None
|
||||
self.generate_video_path()
|
||||
|
||||
|
||||
# self.generate_video_path()
|
||||
# self.i_test
|
||||
def generate_video_path(self):
|
||||
|
||||
self.select_video_cams = [item for i, item in enumerate(self.all_cam_params) if i % 1 == 0 ]
|
||||
@ -120,14 +121,14 @@ class Load_hyper_data(Dataset):
|
||||
elif self.split == "test":
|
||||
return self.load_raw(self.i_test[index])
|
||||
elif self.split == "video":
|
||||
return self.load_video(index)
|
||||
return self.load_raw(index)
|
||||
def __len__(self):
|
||||
if self.split == "train":
|
||||
return len(self.i_train)
|
||||
elif self.split == "test":
|
||||
return len(self.i_test)
|
||||
elif self.split == "video":
|
||||
return len(self.video_path)
|
||||
return len(self.i_test)
|
||||
# return len(self.video_v2)
|
||||
def load_video(self, idx):
|
||||
if idx in self.map.keys():
|
||||
|
||||
@ -39,4 +39,4 @@ wait
|
||||
export CUDA_VISIBLE_DEVICES=2&&python metrics.py --model_path "output/$exp_name1/bouncingballs/" &
|
||||
export CUDA_VISIBLE_DEVICES=0&&python metrics.py --model_path "output/$exp_name1/lego/"
|
||||
wait
|
||||
echo "Done"
|
||||
echo "Done"
|
||||
@ -1,10 +1,8 @@
|
||||
import json
|
||||
import os
|
||||
# exp_name = ["dnerf_tv_nodx","dnerf_tv_nodr","dnerf_tv_nods","dnerf_tv","dnerf_tv_dshs","dnerf_tv_do",
|
||||
# "dnerf_tv_2","dnerf_tv_8","dnerf_tv_deepmlp"]
|
||||
# exp_name= ["dnerf_tv_2_slim"]
|
||||
exp_name=["dynerf_default","dynerf_9"]
|
||||
# exp_name = ["hypernerf_3dgs"]
|
||||
# exp_name = ["hypernerf"]
|
||||
# exp_name= ["dnerf"]
|
||||
exp_name=["dynerf"]
|
||||
scene_name = ["coffee_martini", "cook_spinach", "cut_roasted_beef", "flame_salmon_1", "flame_steak", "sear_steak"]
|
||||
# scene_name = ["bouncingballs","jumpingjacks","lego","standup","hook","mutant","hellwarrior","trex"]
|
||||
# scene_name = ["3dprinter","broom2","peel-banana","vrig-chicken"]
|
||||
@ -18,8 +16,6 @@ for scene in scene_name:
|
||||
load_path = os.path.join("output",experiment,scene,json_name)
|
||||
with open(load_path) as f:
|
||||
js = json.load(f)
|
||||
# print(js)
|
||||
# print(scene, experiment, js["ours_20000"])
|
||||
for res in ["ours_30000","ours_20000","ours_14000","ours_10000","ours_7000","ours_3000"]:
|
||||
if res in js.keys():
|
||||
for key, item in js[res].items():
|
||||
|
||||
@ -12,4 +12,4 @@ wait
|
||||
export CUDA_VISIBLE_DEVICES=2&&python train.py -s data/dnerf/hook --port 6069 --expname "$exp_name1/hook" --configs arguments/$exp_name1/hook.py &
|
||||
export CUDA_VISIBLE_DEVICES=3&&python train.py -s data/dnerf/hellwarrior --port 6070 --expname "$exp_name1/hellwarrior" --configs arguments/$exp_name1/hellwarrior.py &
|
||||
wait
|
||||
echo "Done"
|
||||
echo "Done"
|
||||
@ -18,4 +18,4 @@ export CUDA_VISIBLE_DEVICES=2&&python metrics.py --model_path output/$exp_name1/
|
||||
export CUDA_VISIBLE_DEVICES=3&&python metrics.py --model_path output/$exp_name1/teddy/ &
|
||||
export CUDA_VISIBLE_DEVICES=2&&python metrics.py --model_path output/$exp_name1/space-out/ &
|
||||
export CUDA_VISIBLE_DEVICES=3&&python metrics.py --model_path output/$exp_name1/spin/
|
||||
echo "Done"
|
||||
echo "Done"
|
||||
4
train.py
4
train.py
@ -86,10 +86,10 @@ def scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_i
|
||||
viewpoint_stack = scene.getTrainCameras()
|
||||
if opt.custom_sampler is not None:
|
||||
sampler = FineSampler(viewpoint_stack)
|
||||
viewpoint_stack_loader = DataLoader(viewpoint_stack, batch_size=batch_size,sampler=sampler,num_workers=32,collate_fn=list)
|
||||
viewpoint_stack_loader = DataLoader(viewpoint_stack, batch_size=batch_size,sampler=sampler,num_workers=16,collate_fn=list)
|
||||
random_loader = False
|
||||
else:
|
||||
viewpoint_stack_loader = DataLoader(viewpoint_stack, batch_size=batch_size,shuffle=True,num_workers=32,collate_fn=list)
|
||||
viewpoint_stack_loader = DataLoader(viewpoint_stack, batch_size=batch_size,shuffle=True,num_workers=16,collate_fn=list)
|
||||
random_loader = True
|
||||
loader = iter(viewpoint_stack_loader)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user