From 6653d481a69898eb6d758b7b74c7acd913bfa562 Mon Sep 17 00:00:00 2001 From: Geralt_of_Rivia <87054407+guanjunwu@users.noreply.github.com> Date: Mon, 11 Dec 2023 13:32:30 +0800 Subject: [PATCH] Update README.md --- README.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 5936a58..6b5d39c 100644 --- a/README.md +++ b/README.md @@ -122,21 +122,21 @@ merge your trained 4dgs. usage: ```python export exp_name="dynerf" -python merge_many_4dgs.py --model_path output/$exp_name/flame_salmon_1 +python merge_many_4dgs.py --model_path output/$exp_name/sear_steak ``` `colmap.sh`: generate point clouds from input data ```bash bash colmap.sh data/hypernerf/virg/vrig-chicken hypernerf -bash colmap.sh data/dynerf/flame_salmon_1 llff +bash colmap.sh data/dynerf/sear_steak llff ``` **Blender** format seems doesn't work. Welcome to raise a pull request to fix it. `downsample_point.py` :downsample generated point clouds by sfm. ```python -python scripts/downsample_point.py data/dynerf/sear_steak/points3D_downsample.ply data/dynerf/sear_steak/points3D_downsample2.ply +python scripts/downsample_point.py data/dynerf/sear_steak/colmap/dense/workspace/fused.ply data/dynerf/sear_steak/points3D_downsample2.ply ``` In my paper, I always use `colmap.sh` to generate dense point clouds and downsample it to less than 40000 points.