From d55120cd5bb33e41a1779c0271cbed4d21c7edab Mon Sep 17 00:00:00 2001 From: guanjunwu <985091524@qq.com> Date: Mon, 25 Mar 2024 01:30:46 +0800 Subject: [PATCH] update-hypernerf-guidance --- README.md | 31 ++++++++++++++++++++----------- 1 file changed, 20 insertions(+), 11 deletions(-) diff --git a/README.md b/README.md index 2adf4f4..6555bb6 100644 --- a/README.md +++ b/README.md @@ -25,6 +25,7 @@ Light Gaussian implementation: [This link](https://github.com/pablodawson/4DGaus ## News +2024.3.25: Update guidance for hypernerf and dynerf dataset. 2024.03.04: We change the hyperparameters of the Neu3D dataset, corresponding to our paper @@ -104,10 +105,28 @@ python scripts/downsample_point.py data/dynerf/cut_roasted_beef/colmap/dense/wor # Finally, train. python train.py -s data/dynerf/cut_roasted_beef --port 6017 --expname "dynerf/cut_roasted_beef" --configs arguments/dynerf/cut_roasted_beef.py ``` +For training hypernerf scenes such as `virg/broom`, run +```python +# First, computing dense point clouds by COLMAP +bash colmap.sh data/hypernerf/virg/broom2 hypernerf +# Second, downsample the point clouds generated in the first step. +python scripts/downsample_point.py data/hypernerf/virg/broom2/colmap/dense/workspace/fused.ply data/hypernerf/virg/broom2/points3D_downsample2.ply +# Finally, train. +python train.py -s data/hypernerf/virg/broom2/ --port 6017 --expname "hypernerf/broom2" --configs arguments/hypernerf/broom2.py +``` +For your custom datasets, install nerfstudio and follow their colmap pipeline. + +```python +pip install nerfstudio +# computing camera poses by colmap pipeline +ns-process-data images --data data/your-data --output-dir data/your-ns-data +cp -r data/your-ns-data/images data/your-ns-data/colmap/images +python train.py -s data/your-ns-data/colmap --port 6017 --expname "custom" --configs arguments/hypernerf/default.py +``` You can customize your training config through the config files. -Checkpoint +## Checkpoint Also, you can training your model with checkpoint. @@ -138,17 +157,7 @@ You can just run the following script to evaluate the model. python metrics.py --model_path "output/dnerf/bouncingballs/" ``` -## Custom Datasets -Install nerfstudio and follow their colmap pipeline. - -``` -pip install nerfstudio -ns-process-data images --data data/your-data --output-dir data/your-ns-data -cp -r data/your-ns-data/images data/your-ns-data/colmap/images -python train.py -s data/your-ns-data/colmap --port 6017 --expname "custom" --configs arguments/hypernerf/default.py - -``` ## Viewer [Watch me](./docs/viewer_usage.md) ## Scripts