diff --git a/README.md b/README.md index fc344fe..2adf4f4 100644 --- a/README.md +++ b/README.md @@ -56,7 +56,7 @@ In our environment, we use pytorch=1.13.1+cu116. The dataset provided in [D-NeRF](https://github.com/albertpumarola/D-NeRF) is used. You can download the dataset from [dropbox](https://www.dropbox.com/s/0bf6fl0ye2vz3vr/data.zip?dl=0). **For real dynamic scenes:** -The dataset provided in [HyperNeRF](https://github.com/google/hypernerf) is used. You can download scenes from [Hypernerf Dataset](https://github.com/google/hypernerf/releases/tag/v0.1) and organize them as [Nerfies](https://github.com/google/nerfies#datasets). Meanwhile, [Plenoptic Dataset](https://github.com/facebookresearch/Neural_3D_Video) could be downloaded from their official websites. To save the memory, you should extract the frames of each video using `preprocess_dynerf.py` in the scripts and then organize your dataset as follows. +The dataset provided in [HyperNeRF](https://github.com/google/hypernerf) is used. You can download scenes from [Hypernerf Dataset](https://github.com/google/hypernerf/releases/tag/v0.1) and organize them as [Nerfies](https://github.com/google/nerfies#datasets). Meanwhile, [Plenoptic Dataset](https://github.com/facebookresearch/Neural_3D_Video) could be downloaded from their official websites. To save the memory, you should extract the frames of each video and then organize your dataset as follows. ``` ├── data @@ -93,6 +93,18 @@ For training synthetic scenes such as `bouncingballs`, run python train.py -s data/dnerf/bouncingballs --port 6017 --expname "dnerf/bouncingballs" --configs arguments/dnerf/bouncingballs.py ``` +For training dynerf scenes such as `cut_roasted_beef`, run +```python +# First, extract the frames of each video. +python scripts/preprocess_dynerf.py --datadir data/dynerf/cut_roasted_beef +# Second, generate point clouds from input data. +bash colmap.sh data/dynerf/cut_roasted_beef llff +# Third, downsample the point clouds generated in the second step. +python scripts/downsample_point.py data/dynerf/cut_roasted_beef/colmap/dense/workspace/fused.ply data/dynerf/cut_roasted_beef/points3D_downsample2.ply +# Finally, train. +python train.py -s data/dynerf/cut_roasted_beef --port 6017 --expname "dynerf/cut_roasted_beef" --configs arguments/dynerf/cut_roasted_beef.py +``` + You can customize your training config through the config files. Checkpoint @@ -166,14 +178,6 @@ export exp_name="dynerf" python merge_many_4dgs.py --model_path output/$exp_name/sear_steak ``` -`preprocess_dynerf.py`: -extract the frames of each video. -usage: - -``` -python scripts/preprocess_dynerf.py --datadir data/dynerf/sear_steak -``` - `colmap.sh`: generate point clouds from input data