fix-some-typo
This commit is contained in:
parent
793cfb880c
commit
d3fdb452e1
11
README.md
11
README.md
@ -30,18 +30,23 @@ Our method converges very quickly. And achieves real-time rendering speed.
|
||||
## Environmental Setups
|
||||
Please follow the [3D-GS](https://github.com/graphdeco-inria/gaussian-splatting) to install the relative packages.
|
||||
```bash
|
||||
git clone https://github.com/hustvl/4DGaussians --recursive
|
||||
git clone https://github.com/hustvl/4DGaussians
|
||||
cd 4DGaussians
|
||||
conda create -n Gaussians4D python=3.7
|
||||
conda activate Gaussians4D
|
||||
|
||||
pip install -r requirements.txt
|
||||
cd submodules
|
||||
git clone https://github.com/ingra14m/depth-diff-gaussian-rasterization
|
||||
pip install -e depth-diff-gaussian-rasterization
|
||||
```
|
||||
In our environment, we use pytorch=1.13.1+cu116
|
||||
In our environment, we use pytorch=1.13.1+cu116.
|
||||
## Data Preparation
|
||||
**For synthetic scenes:**
|
||||
The dataset provided in [D-NeRF](https://github.com/albertpumarola/D-NeRF) is used. You can download the dataset from [dropbox](https://www.dropbox.com/s/0bf6fl0ye2vz3vr/data.zip?dl=0).
|
||||
|
||||
**For real dynamic scenes:**
|
||||
The dataset provided in [HyperNeRF](https://github.com/google/hypernerf) is used. You can download scenes from [Hypernerf Dataset](https://github.com/google/hypernerf/releases/tag/v0.1) and organize them as [Nerfies](https://github.com/google/nerfies#datasets). Meanwhile, [Plenoptic Dataset](https://github.com/facebookresearch/Neural_3D_Video) could be downloaded from their offical websites, to save the memory, you should extract the frames of each video, twhen organize your dataset as follows.
|
||||
The dataset provided in [HyperNeRF](https://github.com/google/hypernerf) is used. You can download scenes from [Hypernerf Dataset](https://github.com/google/hypernerf/releases/tag/v0.1) and organize them as [Nerfies](https://github.com/google/nerfies#datasets). Meanwhile, [Plenoptic Dataset](https://github.com/facebookresearch/Neural_3D_Video) could be downloaded from their offical websites, to save the memory, you should extract the frames of each video, them organize your dataset as follows.
|
||||
```
|
||||
├── data
|
||||
│ | dnerf
|
||||
|
||||
@ -2,8 +2,7 @@ torch==1.13.1
|
||||
torchvision==0.14.1
|
||||
torchaudio==0.13.1
|
||||
mmcv==1.6.0
|
||||
matploblib
|
||||
matplotlib
|
||||
argparse
|
||||
lpips
|
||||
plyfile
|
||||
submodules/depth-diff-gaussian-rasterization
|
||||
|
||||
@ -146,10 +146,6 @@ class deform_network(nn.Module):
|
||||
return self.deformation_net.get_mlp_parameters() + list(self.timenet.parameters())
|
||||
def get_grid_parameters(self):
|
||||
return self.deformation_net.get_grid_parameters()
|
||||
class Tineuvox(nn.Module):
|
||||
def __init__(self) -> None:
|
||||
super(Tineuvox).__init__()
|
||||
pass
|
||||
|
||||
def initialize_weights(m):
|
||||
if isinstance(m, nn.Linear):
|
||||
|
||||
@ -180,11 +180,3 @@ class HexPlaneField(nn.Module):
|
||||
features = self.get_density(pts, timestamps)
|
||||
|
||||
return features
|
||||
if __name__ == "__main__":
|
||||
aabb = torch.tensor([[-3,-3,-3],
|
||||
[3,3,3]])
|
||||
planes = KPlaneField(aabb)
|
||||
pts = torch.randn(10000,3)
|
||||
time = torch.ones(10000,1)
|
||||
features = planes.forward(pts,time)
|
||||
print(features.shape)
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
bash scripts/train_ablation.sh dnerf_noboth
|
||||
bash scripts/process_dnerf.sh dnerf_tv_test
|
||||
wait
|
||||
# bash scripts/train_ablation.sh dnerf_3dgs
|
||||
# wait
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user