update-hypernerf-guidance
This commit is contained in:
parent
0b0b1a2d78
commit
d55120cd5b
31
README.md
31
README.md
@ -25,6 +25,7 @@ Light Gaussian implementation: [This link](https://github.com/pablodawson/4DGaus
|
|||||||
|
|
||||||
|
|
||||||
## News
|
## News
|
||||||
|
2024.3.25: Update guidance for hypernerf and dynerf dataset.
|
||||||
|
|
||||||
2024.03.04: We change the hyperparameters of the Neu3D dataset, corresponding to our paper
|
2024.03.04: We change the hyperparameters of the Neu3D dataset, corresponding to our paper
|
||||||
|
|
||||||
@ -104,10 +105,28 @@ python scripts/downsample_point.py data/dynerf/cut_roasted_beef/colmap/dense/wor
|
|||||||
# Finally, train.
|
# Finally, train.
|
||||||
python train.py -s data/dynerf/cut_roasted_beef --port 6017 --expname "dynerf/cut_roasted_beef" --configs arguments/dynerf/cut_roasted_beef.py
|
python train.py -s data/dynerf/cut_roasted_beef --port 6017 --expname "dynerf/cut_roasted_beef" --configs arguments/dynerf/cut_roasted_beef.py
|
||||||
```
|
```
|
||||||
|
For training hypernerf scenes such as `virg/broom`, run
|
||||||
|
```python
|
||||||
|
# First, computing dense point clouds by COLMAP
|
||||||
|
bash colmap.sh data/hypernerf/virg/broom2 hypernerf
|
||||||
|
# Second, downsample the point clouds generated in the first step.
|
||||||
|
python scripts/downsample_point.py data/hypernerf/virg/broom2/colmap/dense/workspace/fused.ply data/hypernerf/virg/broom2/points3D_downsample2.ply
|
||||||
|
# Finally, train.
|
||||||
|
python train.py -s data/hypernerf/virg/broom2/ --port 6017 --expname "hypernerf/broom2" --configs arguments/hypernerf/broom2.py
|
||||||
|
```
|
||||||
|
|
||||||
|
For your custom datasets, install nerfstudio and follow their colmap pipeline.
|
||||||
|
|
||||||
|
```python
|
||||||
|
pip install nerfstudio
|
||||||
|
# computing camera poses by colmap pipeline
|
||||||
|
ns-process-data images --data data/your-data --output-dir data/your-ns-data
|
||||||
|
cp -r data/your-ns-data/images data/your-ns-data/colmap/images
|
||||||
|
python train.py -s data/your-ns-data/colmap --port 6017 --expname "custom" --configs arguments/hypernerf/default.py
|
||||||
|
```
|
||||||
You can customize your training config through the config files.
|
You can customize your training config through the config files.
|
||||||
|
|
||||||
Checkpoint
|
## Checkpoint
|
||||||
|
|
||||||
Also, you can training your model with checkpoint.
|
Also, you can training your model with checkpoint.
|
||||||
|
|
||||||
@ -138,17 +157,7 @@ You can just run the following script to evaluate the model.
|
|||||||
python metrics.py --model_path "output/dnerf/bouncingballs/"
|
python metrics.py --model_path "output/dnerf/bouncingballs/"
|
||||||
```
|
```
|
||||||
|
|
||||||
## Custom Datasets
|
|
||||||
|
|
||||||
Install nerfstudio and follow their colmap pipeline.
|
|
||||||
|
|
||||||
```
|
|
||||||
pip install nerfstudio
|
|
||||||
ns-process-data images --data data/your-data --output-dir data/your-ns-data
|
|
||||||
cp -r data/your-ns-data/images data/your-ns-data/colmap/images
|
|
||||||
python train.py -s data/your-ns-data/colmap --port 6017 --expname "custom" --configs arguments/hypernerf/default.py
|
|
||||||
|
|
||||||
```
|
|
||||||
## Viewer
|
## Viewer
|
||||||
[Watch me](./docs/viewer_usage.md)
|
[Watch me](./docs/viewer_usage.md)
|
||||||
## Scripts
|
## Scripts
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user