import imageio import numpy as np import torch from scene import Scene import os import cv2 from tqdm import tqdm from os import makedirs from gaussian_renderer import render import torchvision from utils.general_utils import safe_state from argparse import ArgumentParser from arguments import ModelParams, PipelineParams, get_combined_args, ModelHiddenParams from gaussian_renderer import GaussianModel from time import time import open3d as o3d # import torch.multiprocessing as mp import threading from utils.render_utils import get_state_at_time import concurrent.futures def render_sets(dataset : ModelParams, hyperparam, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool, skip_video: bool): with torch.no_grad(): gaussians = GaussianModel(dataset.sh_degree, hyperparam) scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False) bg_color = [1,1,1] if dataset.white_background else [0, 0, 0] background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") return gaussians, scene def save_point_cloud(points, model_path, timestamp): output_path = os.path.join(model_path,"point_pertimestamp") if not os.path.exists(output_path): os.makedirs(output_path,exist_ok=True) points = points.detach().cpu().numpy() pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) ply_path = os.path.join(output_path,f"points_{timestamp}.ply") o3d.io.write_point_cloud(ply_path, pcd) parser = ArgumentParser(description="Testing script parameters") model = ModelParams(parser, sentinel=True) pipeline = PipelineParams(parser) hyperparam = ModelHiddenParams(parser) parser.add_argument("--iteration", default=-1, type=int) parser.add_argument("--skip_train", action="store_true") parser.add_argument("--skip_test", action="store_true") parser.add_argument("--quiet", action="store_true") parser.add_argument("--skip_video", action="store_true") parser.add_argument("--configs", type=str) args = get_combined_args(parser) print("Rendering " , args.model_path) if args.configs: import mmcv from utils.params_utils import merge_hparams config = mmcv.Config.fromfile(args.configs) args = merge_hparams(args, config) # Initialize system state (RNG) safe_state(args.quiet) gaussians, scene = render_sets(model.extract(args), hyperparam.extract(args), args.iteration, pipeline.extract(args), args.skip_train, args.skip_test, args.skip_video) for index, viewpoint in enumerate(scene.getVideoCameras()): points, scales_final, rotations_final, opacity_final, shs_final = get_state_at_time(gaussians, viewpoint) save_point_cloud(points, args.model_path, index)