# 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering ## ArXiv Preprint ### [Project Page](https://guanjunwu.github.io/4dgs/index.html)| [arXiv Paper](https://arxiv.org/abs/2310.08528) [Guanjun Wu](https://guanjunwu.github.io/)1*, [Taoran Yi](https://github.com/taoranyi)2*, [Jiemin Fang](https://jaminfong.cn/)3‡, [Lingxi Xie](http://lingxixie.com/)3,
[Xiaopeng Zhang](https://scholar.google.com/citations?user=Ud6aBAcAAAAJ&hl=zh-CN)3, [Wei Wei](https://www.eric-weiwei.com/)1,[Wenyu Liu](http://eic.hust.edu.cn/professor/liuwenyu/)2, [Qi Tian](https://www.qitian1987.com/)3 , [Xinggang Wang](https://xwcv.github.io)2‡✉ 1School of CS, HUST   2School of EIC, HUST   3Huawei Inc.   \* Equal Contributions. $\ddagger$ Project Lead. Corresponding Author. --------------------------------------------------- ![block](assets/teaserfig.jpg) Our method converges very quickly and achieves real-time rendering speed. Colab demo:[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hustvl/4DGaussians/blob/master/4DGaussians.ipynb) (Thanks [camenduru](https://github.com/camenduru/4DGaussians-colab).) Light Gaussian implementation: [This link](https://github.com/pablodawson/4DGaussians) (Thanks [pablodawson](https://github.com/pablodawson)) ## Environmental Setups Please follow the [3D-GS](https://github.com/graphdeco-inria/gaussian-splatting) to install the relative packages. ```bash git clone https://github.com/hustvl/4DGaussians cd 4DGaussians git submodule update --init --recursive conda create -n Gaussians4D python=3.7 conda activate Gaussians4D pip install -r requirements.txt pip install -e submodules/depth-diff-gaussian-rasterization pip install -e submodules/simple-knn ``` In our environment, we use pytorch=1.13.1+cu116. ## Data Preparation **For synthetic scenes:** The dataset provided in [D-NeRF](https://github.com/albertpumarola/D-NeRF) is used. You can download the dataset from [dropbox](https://www.dropbox.com/s/0bf6fl0ye2vz3vr/data.zip?dl=0). **For real dynamic scenes:** The dataset provided in [HyperNeRF](https://github.com/google/hypernerf) is used. You can download scenes from [Hypernerf Dataset](https://github.com/google/hypernerf/releases/tag/v0.1) and organize them as [Nerfies](https://github.com/google/nerfies#datasets). Meanwhile, [Plenoptic Dataset](https://github.com/facebookresearch/Neural_3D_Video) could be downloaded from their official websites. To save the memory, you should extract the frames of each video and then organize your dataset as follows. ``` ├── data │ | dnerf │ ├── mutant │ ├── standup │ ├── ... │ | hypernerf │ ├── interp │ ├── misc │ ├── virg │ | dynerf │ ├── cook_spinach │ ├── cam00 │ ├── images │ ├── 0000.png │ ├── 0001.png │ ├── 0002.png │ ├── ... │ ├── cam01 │ ├── images │ ├── 0000.png │ ├── 0001.png │ ├── ... │ ├── cut_roasted_beef | ├── ... ``` ## Training For training synthetic scenes such as `bouncingballs`, run ``` python train.py -s data/dnerf/bouncingballs --port 6017 --expname "dnerf/bouncingballs" --configs arguments/dnerf/bouncingballs.py ``` You can customize your training config through the config files. # Checkpoint Also, you can training your model with checkpoint. ```python python train.py -s data/dnerf/bouncingballs --port 6017 --expname "dnerf/bouncingballs" --configs arguments/dnerf/bouncingballs.py --checkpoint_iterations 200 # change it. ``` Then load checkpoint with: ```python python train.py -s data/dnerf/bouncingballs --port 6017 --expname "dnerf/bouncingballs" --configs arguments/dnerf/bouncingballs.py --start_checkpoint "output/dnerf/bouncingballs/chkpnt_coarse_200.pth" # finestage: --start_checkpoint "output/dnerf/bouncingballs/chkpnt_fine_200.pth" ``` ## Rendering Run the following script to render the images. ``` python render.py --model_path "output/dnerf/bouncingballs/" --skip_train --configs arguments/dnerf/bouncingballs.py & ``` ## Evaluation You can just run the following script to evaluate the model. ``` python metrics.py --model_path "output/dnerf/bouncingballs/" ``` ## Custom Datasets Install nerfstudio and follow their colmap pipeline. ``` pip install nerfstudio ns-process-data images --data data/your-data --output-dir data/your-ns-data python train.py -s data/your-ns-data --port 6017 --expname "custom" --configs arguments/hypernerf/default.py ``` ## Scripts There are some helpful scripts in , please feel free to use them. `vis_point.py`: get all points clouds at each timestamps. usage: ```python export exp_name="hypernerf" python vis_point.py --model_path output/$exp_name/interp/aleks-teapot --configs arguments/$exp_name/default.py ``` `weight_visualization.ipynb`: visualize the weight of Multi-resolution HexPlane module. `merge_many_4dgs.py`: merge your trained 4dgs. usage: ```python export exp_name="dynerf" python merge_many_4dgs.py --model_path output/$exp_name/sear_steak ``` `colmap.sh`: generate point clouds from input data ```bash bash colmap.sh data/hypernerf/virg/vrig-chicken hypernerf bash colmap.sh data/dynerf/sear_steak llff ``` **Blender** format seems doesn't work. Welcome to raise a pull request to fix it. `downsample_point.py` :downsample generated point clouds by sfm. ```python python scripts/downsample_point.py data/dynerf/sear_steak/colmap/dense/workspace/fused.ply data/dynerf/sear_steak/points3D_downsample2.ply ``` In my paper, I always use `colmap.sh` to generate dense point clouds and downsample it to less than 40000 points. Here are some codes maybe useful but never adopted in my paper, you can also try it. --- ## Contributions **This project is still under development. Please feel free to raise issues or submit pull requests to contribute to our codebase.** --- Some source code of ours is borrowed from [3DGS](https://github.com/graphdeco-inria/gaussian-splatting), [k-planes](https://github.com/Giodiro/kplanes_nerfstudio),[HexPlane](https://github.com/Caoang327/HexPlane), [TiNeuVox](https://github.com/hustvl/TiNeuVox). We sincerely appreciate the excellent works of these authors. ## Acknowledgement We would like to express our sincere gratitude to [@zhouzhenghong-gt](https://github.com/zhouzhenghong-gt/) for his revisions to our code and discussions on the content of our paper. ## Citation Some insights about neural voxel grids and dynamic scenes reconstruction originate from [TiNeuVox](https://github.com/hustvl/TiNeuVox). If you find this repository/work helpful in your research, welcome to cite these papers and give a ⭐. ``` @article{wu20234dgaussians, title={4D Gaussian Splatting for Real-Time Dynamic Scene Rendering}, author={Wu, Guanjun and Yi, Taoran and Fang, Jiemin and Xie, Lingxi and Zhang, Xiaopeng and Wei Wei and Liu, Wenyu and Tian, Qi and Wang Xinggang}, journal={arXiv preprint arXiv:2310.08528}, year={2023} } @inproceedings{TiNeuVox, author = {Fang, Jiemin and Yi, Taoran and Wang, Xinggang and Xie, Lingxi and Zhang, Xiaopeng and Liu, Wenyu and Nie\ss{}ner, Matthias and Tian, Qi}, title = {Fast Dynamic Radiance Fields with Time-Aware Neural Voxels}, year = {2022}, booktitle = {SIGGRAPH Asia 2022 Conference Papers} } ```