import os import time import functools import numpy as np import torch import torch.nn as nn import torch.nn.functional as F parent_dir = os.path.dirname(os.path.abspath(__file__)) def create_grid(type, **kwargs): if type == 'DenseGrid': return DenseGrid(**kwargs) elif type == 'TensoRFGrid': return TensoRFGrid(**kwargs) else: raise NotImplementedError ''' Dense 3D grid ''' class DenseGrid(nn.Module): def __init__(self, channels, world_size, xyz_min, xyz_max, **kwargs): super(DenseGrid, self).__init__() self.channels = channels self.world_size = world_size self.register_buffer('xyz_min', torch.Tensor(xyz_min)) self.register_buffer('xyz_max', torch.Tensor(xyz_max)) self.grid = nn.Parameter(torch.zeros([1, channels, *world_size])) def forward(self, xyz): ''' xyz: global coordinates to query ''' shape = xyz.shape[:-1] xyz = xyz.reshape(1,1,1,-1,3) ind_norm = ((xyz - self.xyz_min) / (self.xyz_max - self.xyz_min)).flip((-1,)) * 2 - 1 out = F.grid_sample(self.grid, ind_norm, mode='bilinear', align_corners=True) out = out.reshape(self.channels,-1).T.reshape(*shape,self.channels) if self.channels == 1: out = out.squeeze(-1) return out def scale_volume_grid(self, new_world_size): if self.channels == 0: self.grid = nn.Parameter(torch.zeros([1, self.channels, *new_world_size])) else: self.grid = nn.Parameter( F.interpolate(self.grid.data, size=tuple(new_world_size), mode='trilinear', align_corners=True)) def get_dense_grid(self): return self.grid @torch.no_grad() def __isub__(self, val): self.grid.data -= val return self def extra_repr(self): return f'channels={self.channels}, world_size={self.world_size.tolist()}'