2024-03-04 11:52:42 +08:00

141 lines
5.6 KiB
Python

#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import torch
import math
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer
from scene.gaussian_model import GaussianModel
from utils.sh_utils import eval_sh
from time import time as get_time
def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, override_color = None, stage="fine", cam_type=None):
"""
Render the scene.
Background tensor (bg_color) must be on GPU!
"""
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
try:
screenspace_points.retain_grad()
except:
pass
# Set up rasterization configuration
means3D = pc.get_xyz
if cam_type != "PanopticSports":
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
raster_settings = GaussianRasterizationSettings(
image_height=int(viewpoint_camera.image_height),
image_width=int(viewpoint_camera.image_width),
tanfovx=tanfovx,
tanfovy=tanfovy,
bg=bg_color,
scale_modifier=scaling_modifier,
viewmatrix=viewpoint_camera.world_view_transform.cuda(),
projmatrix=viewpoint_camera.full_proj_transform.cuda(),
sh_degree=pc.active_sh_degree,
campos=viewpoint_camera.camera_center.cuda(),
prefiltered=False,
debug=pipe.debug
)
time = torch.tensor(viewpoint_camera.time).to(means3D.device).repeat(means3D.shape[0],1)
else:
raster_settings = viewpoint_camera['camera']
time=torch.tensor(viewpoint_camera['time']).to(means3D.device).repeat(means3D.shape[0],1)
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
# means3D = pc.get_xyz
# add deformation to each points
# deformation = pc.get_deformation
means2D = screenspace_points
opacity = pc._opacity
shs = pc.get_features
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
# scaling / rotation by the rasterizer.
scales = None
rotations = None
cov3D_precomp = None
if pipe.compute_cov3D_python:
cov3D_precomp = pc.get_covariance(scaling_modifier)
else:
scales = pc._scaling
rotations = pc._rotation
deformation_point = pc._deformation_table
if "coarse" in stage:
means3D_final, scales_final, rotations_final, opacity_final, shs_final = means3D, scales, rotations, opacity, shs
else:
# time0 = get_time()
# means3D_deform, scales_deform, rotations_deform, opacity_deform = pc._deformation(means3D[deformation_point], scales[deformation_point],
# rotations[deformation_point], opacity[deformation_point],
# time[deformation_point])
means3D_final, scales_final, rotations_final, opacity_final, shs_final = pc._deformation(means3D, scales,
rotations, opacity, shs,
time)
# time1 = get_time()
# print("deformation forward:",time1-time0)
# print(time.max())
# time2 = get_time()
# print("asset value:",time2-time1)
scales_final = pc.scaling_activation(scales_final)
rotations_final = pc.rotation_activation(rotations_final)
opacity = pc.opacity_activation(opacity_final)
# print(opacity.max())
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
# shs = None
colors_precomp = None
if override_color is None:
if pipe.convert_SHs_python:
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2)
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.cuda().repeat(pc.get_features.shape[0], 1))
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True)
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
else:
pass
# shs =
else:
colors_precomp = override_color
# Rasterize visible Gaussians to image, obtain their radii (on screen).
# time3 = get_time()
rendered_image, radii, depth = rasterizer(
means3D = means3D_final,
means2D = means2D,
shs = shs_final,
colors_precomp = colors_precomp,
opacities = opacity,
scales = scales_final,
rotations = rotations_final,
cov3D_precomp = cov3D_precomp)
# time4 = get_time()
# print("rasterization:",time4-time3)
# breakpoint()
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
# They will be excluded from value updates used in the splitting criteria.
return {"render": rendered_image,
"viewspace_points": screenspace_points,
"visibility_filter" : radii > 0,
"radii": radii,
"depth":depth}