433 lines
21 KiB
Python
433 lines
21 KiB
Python
#
|
|
# Copyright (C) 2023, Inria
|
|
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
|
# All rights reserved.
|
|
#
|
|
# This software is free for non-commercial, research and evaluation use
|
|
# under the terms of the LICENSE.md file.
|
|
#
|
|
# For inquiries contact george.drettakis@inria.fr
|
|
#
|
|
import numpy as np
|
|
import random
|
|
import os, sys
|
|
import torch
|
|
from random import randint
|
|
from utils.loss_utils import l1_loss, ssim, l2_loss, lpips_loss
|
|
from gaussian_renderer import render, network_gui
|
|
import sys
|
|
from scene import Scene, GaussianModel
|
|
from utils.general_utils import safe_state
|
|
import uuid
|
|
from tqdm import tqdm
|
|
from utils.image_utils import psnr
|
|
from argparse import ArgumentParser, Namespace
|
|
from arguments import ModelParams, PipelineParams, OptimizationParams, ModelHiddenParams
|
|
from torch.utils.data import DataLoader
|
|
from utils.timer import Timer
|
|
from utils.loader_utils import FineSampler, get_stamp_list
|
|
import lpips
|
|
from utils.scene_utils import render_training_image
|
|
from time import time
|
|
import copy
|
|
|
|
to8b = lambda x : (255*np.clip(x.cpu().numpy(),0,1)).astype(np.uint8)
|
|
|
|
try:
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
TENSORBOARD_FOUND = True
|
|
except ImportError:
|
|
TENSORBOARD_FOUND = False
|
|
def scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
|
|
checkpoint_iterations, checkpoint, debug_from,
|
|
gaussians, scene, stage, tb_writer, train_iter,timer):
|
|
first_iter = 0
|
|
|
|
gaussians.training_setup(opt)
|
|
if checkpoint:
|
|
# breakpoint()
|
|
if stage == "coarse" and stage not in checkpoint:
|
|
print("start from fine stage, skip coarse stage.")
|
|
# process is in the coarse stage, but start from fine stage
|
|
return
|
|
if stage in checkpoint:
|
|
(model_params, first_iter) = torch.load(checkpoint)
|
|
gaussians.restore(model_params, opt)
|
|
|
|
|
|
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
|
|
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
|
|
|
|
iter_start = torch.cuda.Event(enable_timing = True)
|
|
iter_end = torch.cuda.Event(enable_timing = True)
|
|
|
|
viewpoint_stack = None
|
|
ema_loss_for_log = 0.0
|
|
ema_psnr_for_log = 0.0
|
|
|
|
final_iter = train_iter
|
|
|
|
progress_bar = tqdm(range(first_iter, final_iter), desc="Training progress")
|
|
first_iter += 1
|
|
# lpips_model = lpips.LPIPS(net="alex").cuda()
|
|
video_cams = scene.getVideoCameras()
|
|
test_cams = scene.getTestCameras()
|
|
train_cams = scene.getTrainCameras()
|
|
|
|
|
|
if not viewpoint_stack and not opt.dataloader:
|
|
# dnerf's branch
|
|
viewpoint_stack = [i for i in train_cams]
|
|
temp_list = copy.deepcopy(viewpoint_stack)
|
|
#
|
|
batch_size = opt.batch_size
|
|
print("data loading done")
|
|
if opt.dataloader:
|
|
viewpoint_stack = scene.getTrainCameras()
|
|
if opt.custom_sampler is not None:
|
|
sampler = FineSampler(viewpoint_stack)
|
|
viewpoint_stack_loader = DataLoader(viewpoint_stack, batch_size=batch_size,sampler=sampler,num_workers=32,collate_fn=list)
|
|
random_loader = False
|
|
else:
|
|
viewpoint_stack_loader = DataLoader(viewpoint_stack, batch_size=batch_size,shuffle=True,num_workers=32,collate_fn=list)
|
|
random_loader = True
|
|
loader = iter(viewpoint_stack_loader)
|
|
|
|
|
|
# dynerf, zerostamp_init
|
|
# breakpoint()
|
|
if stage == "coarse" and opt.zerostamp_init:
|
|
load_in_memory = True
|
|
# batch_size = 4
|
|
temp_list = get_stamp_list(viewpoint_stack,0)
|
|
viewpoint_stack = temp_list.copy()
|
|
else:
|
|
load_in_memory = False
|
|
#
|
|
count = 0
|
|
for iteration in range(first_iter, final_iter+1):
|
|
if network_gui.conn == None:
|
|
network_gui.try_connect()
|
|
while network_gui.conn != None:
|
|
try:
|
|
net_image_bytes = None
|
|
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
|
|
if custom_cam != None:
|
|
count +=1
|
|
viewpoint_index = (count ) % len(video_cams)
|
|
if (count //(len(video_cams))) % 2 == 0:
|
|
viewpoint_index = viewpoint_index
|
|
else:
|
|
viewpoint_index = len(video_cams) - viewpoint_index - 1
|
|
# print(viewpoint_index)
|
|
viewpoint = video_cams[viewpoint_index]
|
|
custom_cam.time = viewpoint.time
|
|
# print(custom_cam.time, viewpoint_index, count)
|
|
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer, stage=stage, cam_type=scene.dataset_type)["render"]
|
|
|
|
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
|
|
network_gui.send(net_image_bytes, dataset.source_path)
|
|
if do_training and ((iteration < int(opt.iterations)) or not keep_alive) :
|
|
break
|
|
except Exception as e:
|
|
print(e)
|
|
network_gui.conn = None
|
|
|
|
iter_start.record()
|
|
|
|
gaussians.update_learning_rate(iteration)
|
|
|
|
# Every 1000 its we increase the levels of SH up to a maximum degree
|
|
if iteration % 1000 == 0:
|
|
gaussians.oneupSHdegree()
|
|
|
|
# Pick a random Camera
|
|
|
|
# dynerf's branch
|
|
if opt.dataloader and not load_in_memory:
|
|
try:
|
|
viewpoint_cams = next(loader)
|
|
except StopIteration:
|
|
print("reset dataloader into random dataloader.")
|
|
if not random_loader:
|
|
viewpoint_stack_loader = DataLoader(viewpoint_stack, batch_size=opt.batch_size,shuffle=True,num_workers=32,collate_fn=list)
|
|
random_loader = True
|
|
loader = iter(viewpoint_stack_loader)
|
|
|
|
else:
|
|
idx = 0
|
|
viewpoint_cams = []
|
|
|
|
while idx < batch_size :
|
|
|
|
viewpoint_cam = viewpoint_stack.pop(randint(0,len(viewpoint_stack)-1))
|
|
if not viewpoint_stack :
|
|
viewpoint_stack = temp_list.copy()
|
|
viewpoint_cams.append(viewpoint_cam)
|
|
idx +=1
|
|
if len(viewpoint_cams) == 0:
|
|
continue
|
|
# print(len(viewpoint_cams))
|
|
# breakpoint()
|
|
# Render
|
|
if (iteration - 1) == debug_from:
|
|
pipe.debug = True
|
|
images = []
|
|
gt_images = []
|
|
radii_list = []
|
|
visibility_filter_list = []
|
|
viewspace_point_tensor_list = []
|
|
for viewpoint_cam in viewpoint_cams:
|
|
render_pkg = render(viewpoint_cam, gaussians, pipe, background, stage=stage,cam_type=scene.dataset_type)
|
|
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
|
|
images.append(image.unsqueeze(0))
|
|
if scene.dataset_type!="PanopticSports":
|
|
gt_image = viewpoint_cam.original_image.cuda()
|
|
else:
|
|
gt_image = viewpoint_cam['image'].cuda()
|
|
|
|
gt_images.append(gt_image.unsqueeze(0))
|
|
radii_list.append(radii.unsqueeze(0))
|
|
visibility_filter_list.append(visibility_filter.unsqueeze(0))
|
|
viewspace_point_tensor_list.append(viewspace_point_tensor)
|
|
|
|
|
|
radii = torch.cat(radii_list,0).max(dim=0).values
|
|
visibility_filter = torch.cat(visibility_filter_list).any(dim=0)
|
|
image_tensor = torch.cat(images,0)
|
|
gt_image_tensor = torch.cat(gt_images,0)
|
|
# Loss
|
|
# breakpoint()
|
|
Ll1 = l1_loss(image_tensor, gt_image_tensor[:,:3,:,:])
|
|
|
|
psnr_ = psnr(image_tensor, gt_image_tensor).mean().double()
|
|
# norm
|
|
|
|
|
|
loss = Ll1
|
|
if stage == "fine" and hyper.time_smoothness_weight != 0:
|
|
# tv_loss = 0
|
|
tv_loss = gaussians.compute_regulation(hyper.time_smoothness_weight, hyper.l1_time_planes, hyper.plane_tv_weight)
|
|
loss += tv_loss
|
|
if opt.lambda_dssim != 0:
|
|
ssim_loss = ssim(image_tensor,gt_image_tensor)
|
|
loss += opt.lambda_dssim * (1.0-ssim_loss)
|
|
# if opt.lambda_lpips !=0:
|
|
# lpipsloss = lpips_loss(image_tensor,gt_image_tensor,lpips_model)
|
|
# loss += opt.lambda_lpips * lpipsloss
|
|
|
|
loss.backward()
|
|
if torch.isnan(loss).any():
|
|
print("loss is nan,end training, reexecv program now.")
|
|
os.execv(sys.executable, [sys.executable] + sys.argv)
|
|
viewspace_point_tensor_grad = torch.zeros_like(viewspace_point_tensor)
|
|
for idx in range(0, len(viewspace_point_tensor_list)):
|
|
viewspace_point_tensor_grad = viewspace_point_tensor_grad + viewspace_point_tensor_list[idx].grad
|
|
iter_end.record()
|
|
|
|
with torch.no_grad():
|
|
# Progress bar
|
|
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
|
|
ema_psnr_for_log = 0.4 * psnr_ + 0.6 * ema_psnr_for_log
|
|
total_point = gaussians._xyz.shape[0]
|
|
if iteration % 10 == 0:
|
|
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}",
|
|
"psnr": f"{psnr_:.{2}f}",
|
|
"point":f"{total_point}"})
|
|
progress_bar.update(10)
|
|
if iteration == opt.iterations:
|
|
progress_bar.close()
|
|
|
|
# Log and save
|
|
timer.pause()
|
|
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, [pipe, background], stage, scene.dataset_type)
|
|
if (iteration in saving_iterations):
|
|
print("\n[ITER {}] Saving Gaussians".format(iteration))
|
|
scene.save(iteration, stage)
|
|
if dataset.render_process:
|
|
if (iteration < 1000 and iteration % 10 == 9) \
|
|
or (iteration < 3000 and iteration % 50 == 49) \
|
|
or (iteration < 60000 and iteration % 100 == 99) :
|
|
# breakpoint()
|
|
render_training_image(scene, gaussians, [test_cams[iteration%len(test_cams)]], render, pipe, background, stage+"test", iteration,timer.get_elapsed_time(),scene.dataset_type)
|
|
render_training_image(scene, gaussians, [train_cams[iteration%len(train_cams)]], render, pipe, background, stage+"train", iteration,timer.get_elapsed_time(),scene.dataset_type)
|
|
# render_training_image(scene, gaussians, train_cams, render, pipe, background, stage+"train", iteration,timer.get_elapsed_time(),scene.dataset_type)
|
|
|
|
# total_images.append(to8b(temp_image).transpose(1,2,0))
|
|
timer.start()
|
|
# Densification
|
|
if iteration < opt.densify_until_iter :
|
|
# Keep track of max radii in image-space for pruning
|
|
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
|
|
gaussians.add_densification_stats(viewspace_point_tensor_grad, visibility_filter)
|
|
|
|
if stage == "coarse":
|
|
opacity_threshold = opt.opacity_threshold_coarse
|
|
densify_threshold = opt.densify_grad_threshold_coarse
|
|
else:
|
|
opacity_threshold = opt.opacity_threshold_fine_init - iteration*(opt.opacity_threshold_fine_init - opt.opacity_threshold_fine_after)/(opt.densify_until_iter)
|
|
densify_threshold = opt.densify_grad_threshold_fine_init - iteration*(opt.densify_grad_threshold_fine_init - opt.densify_grad_threshold_after)/(opt.densify_until_iter )
|
|
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0 and gaussians.get_xyz.shape[0]<360000:
|
|
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
|
|
|
|
gaussians.densify(densify_threshold, opacity_threshold, scene.cameras_extent, size_threshold, 5, 5, scene.model_path, iteration, stage)
|
|
if iteration > opt.pruning_from_iter and iteration % opt.pruning_interval == 0 and gaussians.get_xyz.shape[0]>200000:
|
|
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
|
|
|
|
gaussians.prune(densify_threshold, opacity_threshold, scene.cameras_extent, size_threshold)
|
|
|
|
# if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0 :
|
|
if iteration % opt.densification_interval == 0 and gaussians.get_xyz.shape[0]<360000 and opt.add_point:
|
|
gaussians.grow(5,5,scene.model_path,iteration,stage)
|
|
# torch.cuda.empty_cache()
|
|
if iteration % opt.opacity_reset_interval == 0:
|
|
print("reset opacity")
|
|
gaussians.reset_opacity()
|
|
|
|
|
|
|
|
# Optimizer step
|
|
if iteration < opt.iterations:
|
|
gaussians.optimizer.step()
|
|
gaussians.optimizer.zero_grad(set_to_none = True)
|
|
|
|
if (iteration in checkpoint_iterations):
|
|
print("\n[ITER {}] Saving Checkpoint".format(iteration))
|
|
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" +f"_{stage}_" + str(iteration) + ".pth")
|
|
def training(dataset, hyper, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, expname):
|
|
# first_iter = 0
|
|
tb_writer = prepare_output_and_logger(expname)
|
|
gaussians = GaussianModel(dataset.sh_degree, hyper)
|
|
dataset.model_path = args.model_path
|
|
timer = Timer()
|
|
scene = Scene(dataset, gaussians, load_coarse=None)
|
|
timer.start()
|
|
scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
|
|
checkpoint_iterations, checkpoint, debug_from,
|
|
gaussians, scene, "coarse", tb_writer, opt.coarse_iterations,timer)
|
|
scene_reconstruction(dataset, opt, hyper, pipe, testing_iterations, saving_iterations,
|
|
checkpoint_iterations, checkpoint, debug_from,
|
|
gaussians, scene, "fine", tb_writer, opt.iterations,timer)
|
|
|
|
def prepare_output_and_logger(expname):
|
|
if not args.model_path:
|
|
# if os.getenv('OAR_JOB_ID'):
|
|
# unique_str=os.getenv('OAR_JOB_ID')
|
|
# else:
|
|
# unique_str = str(uuid.uuid4())
|
|
unique_str = expname
|
|
|
|
args.model_path = os.path.join("./output/", unique_str)
|
|
# Set up output folder
|
|
print("Output folder: {}".format(args.model_path))
|
|
os.makedirs(args.model_path, exist_ok = True)
|
|
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
|
|
cfg_log_f.write(str(Namespace(**vars(args))))
|
|
|
|
# Create Tensorboard writer
|
|
tb_writer = None
|
|
if TENSORBOARD_FOUND:
|
|
tb_writer = SummaryWriter(args.model_path)
|
|
else:
|
|
print("Tensorboard not available: not logging progress")
|
|
return tb_writer
|
|
|
|
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs, stage, dataset_type):
|
|
if tb_writer:
|
|
tb_writer.add_scalar(f'{stage}/train_loss_patches/l1_loss', Ll1.item(), iteration)
|
|
tb_writer.add_scalar(f'{stage}/train_loss_patchestotal_loss', loss.item(), iteration)
|
|
tb_writer.add_scalar(f'{stage}/iter_time', elapsed, iteration)
|
|
|
|
|
|
# Report test and samples of training set
|
|
if iteration in testing_iterations:
|
|
torch.cuda.empty_cache()
|
|
#
|
|
validation_configs = ({'name': 'test', 'cameras' : [scene.getTestCameras()[idx % len(scene.getTestCameras())] for idx in range(10, 5000, 299)]},
|
|
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(10, 5000, 299)]})
|
|
|
|
for config in validation_configs:
|
|
if config['cameras'] and len(config['cameras']) > 0:
|
|
l1_test = 0.0
|
|
psnr_test = 0.0
|
|
for idx, viewpoint in enumerate(config['cameras']):
|
|
image = torch.clamp(renderFunc(viewpoint, scene.gaussians,stage=stage, cam_type=dataset_type, *renderArgs)["render"], 0.0, 1.0)
|
|
if dataset_type == "PanopticSports":
|
|
gt_image = torch.clamp(viewpoint["image"].to("cuda"), 0.0, 1.0)
|
|
else:
|
|
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
|
|
try:
|
|
if tb_writer and (idx < 5):
|
|
tb_writer.add_images(stage + "/"+config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
|
|
if iteration == testing_iterations[0]:
|
|
tb_writer.add_images(stage + "/"+config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
|
|
except:
|
|
pass
|
|
l1_test += l1_loss(image, gt_image).mean().double()
|
|
# mask=viewpoint.mask
|
|
|
|
psnr_test += psnr(image, gt_image, mask=None).mean().double()
|
|
psnr_test /= len(config['cameras'])
|
|
l1_test /= len(config['cameras'])
|
|
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
|
|
# print("sh feature",scene.gaussians.get_features.shape)
|
|
if tb_writer:
|
|
tb_writer.add_scalar(stage + "/"+config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
|
|
tb_writer.add_scalar(stage+"/"+config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
|
|
|
|
if tb_writer:
|
|
tb_writer.add_histogram(f"{stage}/scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
|
|
|
|
tb_writer.add_scalar(f'{stage}/total_points', scene.gaussians.get_xyz.shape[0], iteration)
|
|
tb_writer.add_scalar(f'{stage}/deformation_rate', scene.gaussians._deformation_table.sum()/scene.gaussians.get_xyz.shape[0], iteration)
|
|
tb_writer.add_histogram(f"{stage}/scene/motion_histogram", scene.gaussians._deformation_accum.mean(dim=-1)/100, iteration,max_bins=500)
|
|
|
|
torch.cuda.empty_cache()
|
|
def setup_seed(seed):
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
np.random.seed(seed)
|
|
random.seed(seed)
|
|
torch.backends.cudnn.deterministic = True
|
|
if __name__ == "__main__":
|
|
# Set up command line argument parser
|
|
# torch.set_default_tensor_type('torch.FloatTensor')
|
|
torch.cuda.empty_cache()
|
|
parser = ArgumentParser(description="Training script parameters")
|
|
setup_seed(6666)
|
|
lp = ModelParams(parser)
|
|
op = OptimizationParams(parser)
|
|
pp = PipelineParams(parser)
|
|
hp = ModelHiddenParams(parser)
|
|
parser.add_argument('--ip', type=str, default="127.0.0.1")
|
|
parser.add_argument('--port', type=int, default=6009)
|
|
parser.add_argument('--debug_from', type=int, default=-1)
|
|
parser.add_argument('--detect_anomaly', action='store_true', default=False)
|
|
parser.add_argument("--test_iterations", nargs="+", type=int, default=[3000,7000,14000])
|
|
parser.add_argument("--save_iterations", nargs="+", type=int, default=[ 14000, 20000, 30_000, 45000, 60000])
|
|
parser.add_argument("--quiet", action="store_true")
|
|
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
|
|
parser.add_argument("--start_checkpoint", type=str, default = None)
|
|
parser.add_argument("--expname", type=str, default = "")
|
|
parser.add_argument("--configs", type=str, default = "")
|
|
|
|
args = parser.parse_args(sys.argv[1:])
|
|
args.save_iterations.append(args.iterations)
|
|
if args.configs:
|
|
import mmcv
|
|
from utils.params_utils import merge_hparams
|
|
config = mmcv.Config.fromfile(args.configs)
|
|
args = merge_hparams(args, config)
|
|
print("Optimizing " + args.model_path)
|
|
|
|
# Initialize system state (RNG)
|
|
safe_state(args.quiet)
|
|
|
|
# Start GUI server, configure and run training
|
|
network_gui.init(args.ip, args.port)
|
|
torch.autograd.set_detect_anomaly(args.detect_anomaly)
|
|
training(lp.extract(args), hp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args.expname)
|
|
|
|
# All done
|
|
print("\nTraining complete.")
|