4DGaussians/metrics.py
2023-12-02 14:13:12 +08:00

124 lines
5.7 KiB
Python

#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
from pathlib import Path
import os
from PIL import Image
import torch
import torchvision.transforms.functional as tf
from utils.loss_utils import ssim
from lpipsPyTorch import lpips
import json
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser
from pytorch_msssim import ms_ssim
def readImages(renders_dir, gt_dir):
renders = []
gts = []
image_names = []
for fname in os.listdir(renders_dir):
render = Image.open(renders_dir / fname)
gt = Image.open(gt_dir / fname)
renders.append(tf.to_tensor(render).unsqueeze(0)[:, :3, :, :].cuda())
gts.append(tf.to_tensor(gt).unsqueeze(0)[:, :3, :, :].cuda())
image_names.append(fname)
return renders, gts, image_names
def evaluate(model_paths):
full_dict = {}
per_view_dict = {}
full_dict_polytopeonly = {}
per_view_dict_polytopeonly = {}
print("")
for scene_dir in model_paths:
try:
print("Scene:", scene_dir)
full_dict[scene_dir] = {}
per_view_dict[scene_dir] = {}
full_dict_polytopeonly[scene_dir] = {}
per_view_dict_polytopeonly[scene_dir] = {}
test_dir = Path(scene_dir) / "test"
for method in os.listdir(test_dir):
print("Method:", method)
full_dict[scene_dir][method] = {}
per_view_dict[scene_dir][method] = {}
full_dict_polytopeonly[scene_dir][method] = {}
per_view_dict_polytopeonly[scene_dir][method] = {}
method_dir = test_dir / method
gt_dir = method_dir/ "gt"
renders_dir = method_dir / "renders"
renders, gts, image_names = readImages(renders_dir, gt_dir)
ssims = []
psnrs = []
lpipss = []
lpipsa = []
ms_ssims = []
Dssims = []
for idx in tqdm(range(len(renders)), desc="Metric evaluation progress"):
ssims.append(ssim(renders[idx], gts[idx]))
psnrs.append(psnr(renders[idx], gts[idx]))
lpipss.append(lpips(renders[idx], gts[idx], net_type='vgg'))
ms_ssims.append(ms_ssim(renders[idx], gts[idx],data_range=1, size_average=True ))
lpipsa.append(lpips(renders[idx], gts[idx], net_type='alex'))
Dssims.append((1-ms_ssims[-1])/2)
print("Scene: ", scene_dir, "SSIM : {:>12.7f}".format(torch.tensor(ssims).mean(), ".5"))
print("Scene: ", scene_dir, "PSNR : {:>12.7f}".format(torch.tensor(psnrs).mean(), ".5"))
print("Scene: ", scene_dir, "LPIPS-vgg: {:>12.7f}".format(torch.tensor(lpipss).mean(), ".5"))
print("Scene: ", scene_dir, "LPIPS-alex: {:>12.7f}".format(torch.tensor(lpipsa).mean(), ".5"))
print("Scene: ", scene_dir, "MS-SSIM: {:>12.7f}".format(torch.tensor(ms_ssims).mean(), ".5"))
print("Scene: ", scene_dir, "D-SSIM: {:>12.7f}".format(torch.tensor(Dssims).mean(), ".5"))
full_dict[scene_dir][method].update({"SSIM": torch.tensor(ssims).mean().item(),
"PSNR": torch.tensor(psnrs).mean().item(),
"LPIPS-vgg": torch.tensor(lpipss).mean().item(),
"LPIPS-alex": torch.tensor(lpipsa).mean().item(),
"MS-SSIM": torch.tensor(ms_ssims).mean().item(),
"D-SSIM": torch.tensor(Dssims).mean().item()},
)
per_view_dict[scene_dir][method].update({"SSIM": {name: ssim for ssim, name in zip(torch.tensor(ssims).tolist(), image_names)},
"PSNR": {name: psnr for psnr, name in zip(torch.tensor(psnrs).tolist(), image_names)},
"LPIPS-vgg": {name: lp for lp, name in zip(torch.tensor(lpipss).tolist(), image_names)},
"LPIPS-alex": {name: lp for lp, name in zip(torch.tensor(lpipsa).tolist(), image_names)},
"MS-SSIM": {name: lp for lp, name in zip(torch.tensor(ms_ssims).tolist(), image_names)},
"D-SSIM": {name: lp for lp, name in zip(torch.tensor(Dssims).tolist(), image_names)},
}
)
with open(scene_dir + "/results.json", 'w') as fp:
json.dump(full_dict[scene_dir], fp, indent=True)
with open(scene_dir + "/per_view.json", 'w') as fp:
json.dump(per_view_dict[scene_dir], fp, indent=True)
except Exception as e:
print("Unable to compute metrics for model", scene_dir)
raise e
if __name__ == "__main__":
device = torch.device("cuda:0")
torch.cuda.set_device(device)
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
parser.add_argument('--model_paths', '-m', required=True, nargs="+", type=str, default=[])
args = parser.parse_args()
evaluate(args.model_paths)