519 lines
13 KiB
JavaScript
519 lines
13 KiB
JavaScript
/**
|
||
* Mnemonist PassjoinIndex
|
||
* ========================
|
||
*
|
||
* The PassjoinIndex is an index leveraging the "passjoin" algorithm as a mean
|
||
* to index strings for Levenshtein distance queries. It features a complexity
|
||
* related to the Levenshtein query threshold k rather than the number of
|
||
* strings to test (roughly O(k^3)).
|
||
*
|
||
* [References]:
|
||
* Jiang, Yu, Dong Deng, Jiannan Wang, Guoliang Li, et Jianhua Feng.
|
||
* « Efficient Parallel Partition-Based Algorithms for Similarity Search and Join
|
||
* with Edit Distance Constraints ». In Proceedings of the Joint EDBT/ICDT 2013
|
||
* Workshops on - EDBT ’13, 341. Genoa, Italy: ACM Press, 2013.
|
||
* https://doi.org/10.1145/2457317.2457382.
|
||
*
|
||
* Li, Guoliang, Dong Deng, et Jianhua Feng. « A Partition-Based Method for
|
||
* String Similarity Joins with Edit-Distance Constraints ». ACM Transactions on
|
||
* Database Systems 38, no 2 (1 juin 2013): 1‑33.
|
||
* https://doi.org/10.1145/2487259.2487261.
|
||
*
|
||
* [Urls]:
|
||
* http://people.csail.mit.edu/dongdeng/projects/passjoin/index.html
|
||
*/
|
||
var Iterator = require('obliterator/iterator'),
|
||
forEach = require('obliterator/foreach');
|
||
|
||
// TODO: leveraging BagDistance as an upper bound of Levenshtein
|
||
// TODO: leverage n-grams recursive indexing
|
||
// TODO: try the MultiArray as a memory backend
|
||
// TODO: what about damerau levenshtein
|
||
|
||
/**
|
||
* Helpers.
|
||
*/
|
||
|
||
/**
|
||
* Function returning the number of substrings that will be selected by the
|
||
* multi-match-aware selection scheme for theshold `k`, for a string of length
|
||
* `s` to match strings of length `l`.
|
||
*
|
||
* @param {number} k - Levenshtein distance threshold.
|
||
* @param {number} s - Length of target strings.
|
||
* @param {number} l - Length of strings to match.
|
||
* @returns {number} - The number of selected substrings.
|
||
*/
|
||
function countSubstringsL(k, s, l) {
|
||
return (((Math.pow(k, 2) - Math.pow(Math.abs(s - l), 2)) / 2) | 0) + k + 1;
|
||
}
|
||
|
||
/**
|
||
* Function returning the minimum number of substrings that will be selected by
|
||
* the multi-match-aware selection scheme for theshold `k`, for a string of
|
||
* length `s` to match any string of relevant length.
|
||
*
|
||
* @param {number} k - Levenshtein distance threshold.
|
||
* @param {number} s - Length of target strings.
|
||
* @returns {number} - The number of selected substrings.
|
||
*/
|
||
function countKeys(k, s) {
|
||
var c = 0;
|
||
|
||
for (var l = 0, m = s + 1; l < m; l++)
|
||
c += countSubstringsL(k, s, l);
|
||
|
||
return c;
|
||
}
|
||
|
||
/**
|
||
* Function used to compare two keys in order to sort them first by decreasing
|
||
* length and then alphabetically as per the "4.2 Effective Indexing Strategy"
|
||
* point of the paper.
|
||
*
|
||
* @param {number} k - Levenshtein distance threshold.
|
||
* @param {number} s - Length of target strings.
|
||
* @returns {number} - The number of selected substrings.
|
||
*/
|
||
function comparator(a, b) {
|
||
if (a.length > b.length)
|
||
return -1;
|
||
if (a.length < b.length)
|
||
return 1;
|
||
|
||
if (a < b)
|
||
return -1;
|
||
if (a > b)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* Function partitioning a string into k + 1 uneven segments, the shorter
|
||
* ones, then the longer ones.
|
||
*
|
||
* @param {number} k - Levenshtein distance threshold.
|
||
* @param {number} l - Length of the string.
|
||
* @returns {Array} - The partition tuples (start, length).
|
||
*/
|
||
function partition(k, l) {
|
||
var m = k + 1,
|
||
a = (l / m) | 0,
|
||
b = a + 1,
|
||
i,
|
||
j;
|
||
|
||
var largeSegments = l - a * m,
|
||
smallSegments = m - largeSegments;
|
||
|
||
var tuples = new Array(k + 1);
|
||
|
||
for (i = 0; i < smallSegments; i++)
|
||
tuples[i] = [i * a, a];
|
||
|
||
var offset = (i - 1) * a + a;
|
||
|
||
for (j = 0; j < largeSegments; j++)
|
||
tuples[i + j] = [offset + j * b, b];
|
||
|
||
return tuples;
|
||
}
|
||
|
||
/**
|
||
* Function yielding a string's k + 1 passjoin segments to index.
|
||
*
|
||
* @param {number} k - Levenshtein distance threshold.
|
||
* @param {string} string - Target string.
|
||
* @returns {Array} - The string's segments.
|
||
*/
|
||
function segments(k, string) {
|
||
var l = string.length,
|
||
m = k + 1,
|
||
a = (l / m) | 0,
|
||
b = a + 1,
|
||
o,
|
||
i,
|
||
j;
|
||
|
||
var largeSegments = l - a * m,
|
||
smallSegments = m - largeSegments;
|
||
|
||
var S = new Array(k + 1);
|
||
|
||
for (i = 0; i < smallSegments; i++) {
|
||
o = i * a;
|
||
S[i] = string.slice(o, o + a);
|
||
}
|
||
|
||
var offset = (i - 1) * a + a;
|
||
|
||
for (j = 0; j < largeSegments; j++) {
|
||
o = offset + j * b;
|
||
S[i + j] = string.slice(o, o + b);
|
||
}
|
||
|
||
return S;
|
||
}
|
||
|
||
// TODO: jsdocs
|
||
function segmentPos(k, i, string) {
|
||
if (i === 0)
|
||
return 0;
|
||
|
||
var l = string.length;
|
||
|
||
var m = k + 1,
|
||
a = (l / m) | 0,
|
||
b = a + 1;
|
||
|
||
var largeSegments = l - a * m,
|
||
smallSegments = m - largeSegments;
|
||
|
||
if (i <= smallSegments - 1)
|
||
return i * a;
|
||
|
||
var offset = i - smallSegments;
|
||
|
||
return smallSegments * a + offset * b;
|
||
}
|
||
|
||
/**
|
||
* Function returning the interval of relevant substrings to lookup using the
|
||
* multi-match-aware substring selection scheme described in the paper.
|
||
*
|
||
* @param {number} k - Levenshtein distance threshold.
|
||
* @param {number} delta - Signed length difference between both considered strings.
|
||
* @param {number} i - k + 1 segment index.
|
||
* @param {number} s - String's length.
|
||
* @param {number} pi - k + 1 segment position in target string.
|
||
* @param {number} li - k + 1 segment length.
|
||
* @returns {Array} - The interval (start, stop).
|
||
*/
|
||
function multiMatchAwareInterval(k, delta, i, s, pi, li) {
|
||
var start1 = pi - i,
|
||
end1 = pi + i;
|
||
|
||
var o = k - i;
|
||
|
||
var start2 = pi + delta - o,
|
||
end2 = pi + delta + o;
|
||
|
||
var end3 = s - li;
|
||
|
||
return [Math.max(0, start1, start2), Math.min(end1, end2, end3)];
|
||
}
|
||
|
||
/**
|
||
* Function yielding relevant substrings to lookup using the multi-match-aware
|
||
* substring selection scheme described in the paper.
|
||
*
|
||
* @param {number} k - Levenshtein distance threshold.
|
||
* @param {string} string - Target string.
|
||
* @param {number} l - Length of strings to match.
|
||
* @param {number} i - k + 1 segment index.
|
||
* @param {number} pi - k + 1 segment position in target string.
|
||
* @param {number} li - k + 1 segment length.
|
||
* @returns {Array} - The contiguous substrings.
|
||
*/
|
||
function multiMatchAwareSubstrings(k, string, l, i, pi, li) {
|
||
var s = string.length;
|
||
|
||
// Note that we need to keep the non-absolute delta for this function
|
||
// to work in both directions, up & down
|
||
var delta = s - l;
|
||
|
||
var interval = multiMatchAwareInterval(k, delta, i, s, pi, li);
|
||
|
||
var start = interval[0],
|
||
stop = interval[1];
|
||
|
||
var currentSubstring = '';
|
||
|
||
var substrings = [];
|
||
|
||
var substring, j, m;
|
||
|
||
for (j = start, m = stop + 1; j < m; j++) {
|
||
substring = string.slice(j, j + li);
|
||
|
||
// We skip identical consecutive substrings (to avoid repetition in case
|
||
// of contiguous letter duplication)
|
||
if (substring === currentSubstring)
|
||
continue;
|
||
|
||
substrings.push(substring);
|
||
|
||
currentSubstring = substring;
|
||
}
|
||
|
||
return substrings;
|
||
}
|
||
|
||
/**
|
||
* PassjoinIndex.
|
||
*
|
||
* @note I tried to apply the paper's optimizations regarding Levenshtein
|
||
* distance computations but it did not provide a performance boost, quite
|
||
* the contrary. This is because since we are mostly using the index for small k
|
||
* here, most of the strings we work on are quite small and the bookkeeping
|
||
* induced by Ukkonen's method and the paper's one are slowing us down more than
|
||
* they actually help us go faster.
|
||
*
|
||
* @note This implementation does not try to ensure that you add the same string
|
||
* more than once.
|
||
*
|
||
* @constructor
|
||
* @param {function} levenshtein - Levenshtein distance function.
|
||
* @param {number} k - Levenshtein distance threshold.
|
||
*/
|
||
function PassjoinIndex(levenshtein, k) {
|
||
if (typeof levenshtein !== 'function')
|
||
throw new Error('mnemonist/passjoin-index: `levenshtein` should be a function returning edit distance between two strings.');
|
||
|
||
if (typeof k !== 'number' || k < 1)
|
||
throw new Error('mnemonist/passjoin-index: `k` should be a number > 0');
|
||
|
||
this.levenshtein = levenshtein;
|
||
this.k = k;
|
||
this.clear();
|
||
}
|
||
|
||
/**
|
||
* Method used to clear the structure.
|
||
*
|
||
* @return {undefined}
|
||
*/
|
||
PassjoinIndex.prototype.clear = function() {
|
||
|
||
// Properties
|
||
this.size = 0;
|
||
this.strings = [];
|
||
this.invertedIndices = {};
|
||
};
|
||
|
||
/**
|
||
* Method used to add a new value to the index.
|
||
*
|
||
* @param {string|Array} value - Value to add.
|
||
* @return {PassjoinIndex}
|
||
*/
|
||
PassjoinIndex.prototype.add = function(value) {
|
||
var l = value.length;
|
||
|
||
var stringIndex = this.size;
|
||
|
||
this.strings.push(value);
|
||
this.size++;
|
||
|
||
var S = segments(this.k, value);
|
||
|
||
var Ll = this.invertedIndices[l];
|
||
|
||
if (typeof Ll === 'undefined') {
|
||
Ll = {};
|
||
this.invertedIndices[l] = Ll;
|
||
}
|
||
|
||
var segment,
|
||
matches,
|
||
key,
|
||
i,
|
||
m;
|
||
|
||
for (i = 0, m = S.length; i < m; i++) {
|
||
segment = S[i];
|
||
key = segment + i;
|
||
matches = Ll[key];
|
||
|
||
if (typeof matches === 'undefined') {
|
||
matches = [stringIndex];
|
||
Ll[key] = matches;
|
||
}
|
||
else {
|
||
matches.push(stringIndex);
|
||
}
|
||
}
|
||
|
||
return this;
|
||
};
|
||
|
||
/**
|
||
* Method used to search for string matching the given query.
|
||
*
|
||
* @param {string|Array} query - Query string.
|
||
* @return {Array}
|
||
*/
|
||
PassjoinIndex.prototype.search = function(query) {
|
||
var s = query.length,
|
||
k = this.k;
|
||
|
||
var M = new Set();
|
||
|
||
var candidates,
|
||
candidate,
|
||
queryPos,
|
||
querySegmentLength,
|
||
key,
|
||
S,
|
||
P,
|
||
l,
|
||
m,
|
||
i,
|
||
n1,
|
||
j,
|
||
n2,
|
||
y,
|
||
n3;
|
||
|
||
for (l = Math.max(0, s - k), m = s + k + 1; l < m; l++) {
|
||
var Ll = this.invertedIndices[l];
|
||
|
||
if (typeof Ll === 'undefined')
|
||
continue;
|
||
|
||
P = partition(k, l);
|
||
|
||
for (i = 0, n1 = P.length; i < n1; i++) {
|
||
queryPos = P[i][0];
|
||
querySegmentLength = P[i][1];
|
||
|
||
S = multiMatchAwareSubstrings(
|
||
k,
|
||
query,
|
||
l,
|
||
i,
|
||
queryPos,
|
||
querySegmentLength
|
||
);
|
||
|
||
// Empty string edge case
|
||
if (!S.length)
|
||
S = [''];
|
||
|
||
for (j = 0, n2 = S.length; j < n2; j++) {
|
||
key = S[j] + i;
|
||
candidates = Ll[key];
|
||
|
||
if (typeof candidates === 'undefined')
|
||
continue;
|
||
|
||
for (y = 0, n3 = candidates.length; y < n3; y++) {
|
||
candidate = this.strings[candidates[y]];
|
||
|
||
// NOTE: first condition is here not to compute Levenshtein
|
||
// distance for tiny strings
|
||
|
||
// NOTE: maintaining a Set of rejected candidate is not really useful
|
||
// because it consumes more memory and because non-matches are
|
||
// less likely to be candidates agains
|
||
if (
|
||
s <= k && l <= k ||
|
||
(
|
||
!M.has(candidate) &&
|
||
this.levenshtein(query, candidate) <= k
|
||
)
|
||
)
|
||
M.add(candidate);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return M;
|
||
};
|
||
|
||
/**
|
||
* Method used to iterate over the index.
|
||
*
|
||
* @param {function} callback - Function to call for each item.
|
||
* @param {object} scope - Optional scope.
|
||
* @return {undefined}
|
||
*/
|
||
PassjoinIndex.prototype.forEach = function(callback, scope) {
|
||
scope = arguments.length > 1 ? scope : this;
|
||
|
||
for (var i = 0, l = this.strings.length; i < l; i++)
|
||
callback.call(scope, this.strings[i], i, this);
|
||
};
|
||
|
||
/**
|
||
* Method used to create an iterator over a index's values.
|
||
*
|
||
* @return {Iterator}
|
||
*/
|
||
PassjoinIndex.prototype.values = function() {
|
||
var strings = this.strings,
|
||
l = strings.length,
|
||
i = 0;
|
||
|
||
return new Iterator(function() {
|
||
if (i >= l)
|
||
return {
|
||
done: true
|
||
};
|
||
|
||
var value = strings[i];
|
||
i++;
|
||
|
||
return {
|
||
value: value,
|
||
done: false
|
||
};
|
||
});
|
||
};
|
||
|
||
/**
|
||
* Attaching the #.values method to Symbol.iterator if possible.
|
||
*/
|
||
if (typeof Symbol !== 'undefined')
|
||
PassjoinIndex.prototype[Symbol.iterator] = PassjoinIndex.prototype.values;
|
||
|
||
/**
|
||
* Convenience known methods.
|
||
*/
|
||
PassjoinIndex.prototype.inspect = function() {
|
||
var array = this.strings.slice();
|
||
|
||
// Trick so that node displays the name of the constructor
|
||
Object.defineProperty(array, 'constructor', {
|
||
value: PassjoinIndex,
|
||
enumerable: false
|
||
});
|
||
|
||
return array;
|
||
};
|
||
|
||
if (typeof Symbol !== 'undefined')
|
||
PassjoinIndex.prototype[Symbol.for('nodejs.util.inspect.custom')] = PassjoinIndex.prototype.inspect;
|
||
|
||
/**
|
||
* Static @.from function taking an arbitrary iterable & converting it into
|
||
* a structure.
|
||
*
|
||
* @param {Iterable} iterable - Target iterable.
|
||
* @return {PassjoinIndex}
|
||
*/
|
||
PassjoinIndex.from = function(iterable, levenshtein, k) {
|
||
var index = new PassjoinIndex(levenshtein, k);
|
||
|
||
forEach(iterable, function(string) {
|
||
index.add(string);
|
||
});
|
||
|
||
return index;
|
||
};
|
||
|
||
/**
|
||
* Exporting.
|
||
*/
|
||
PassjoinIndex.countKeys = countKeys;
|
||
PassjoinIndex.comparator = comparator;
|
||
PassjoinIndex.partition = partition;
|
||
PassjoinIndex.segments = segments;
|
||
PassjoinIndex.segmentPos = segmentPos;
|
||
PassjoinIndex.multiMatchAwareInterval = multiMatchAwareInterval;
|
||
PassjoinIndex.multiMatchAwareSubstrings = multiMatchAwareSubstrings;
|
||
|
||
module.exports = PassjoinIndex;
|