436 lines
13 KiB
Python
Executable File
436 lines
13 KiB
Python
Executable File
dependencies = ["torch"]
|
|
|
|
import torch
|
|
|
|
from .midas.dpt_depth import DPTDepthModel
|
|
from .midas.midas_net import MidasNet
|
|
from .midas.midas_net_custom import MidasNet_small
|
|
|
|
def DPT_BEiT_L_512(pretrained=True, **kwargs):
|
|
""" # This docstring shows up in hub.help()
|
|
MiDaS DPT_BEiT_L_512 model for monocular depth estimation
|
|
pretrained (bool): load pretrained weights into model
|
|
"""
|
|
|
|
model = DPTDepthModel(
|
|
path=None,
|
|
backbone="beitl16_512",
|
|
non_negative=True,
|
|
)
|
|
|
|
if pretrained:
|
|
checkpoint = (
|
|
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt"
|
|
)
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
|
|
return model
|
|
|
|
def DPT_BEiT_L_384(pretrained=True, **kwargs):
|
|
""" # This docstring shows up in hub.help()
|
|
MiDaS DPT_BEiT_L_384 model for monocular depth estimation
|
|
pretrained (bool): load pretrained weights into model
|
|
"""
|
|
|
|
model = DPTDepthModel(
|
|
path=None,
|
|
backbone="beitl16_384",
|
|
non_negative=True,
|
|
)
|
|
|
|
if pretrained:
|
|
checkpoint = (
|
|
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_384.pt"
|
|
)
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
|
|
return model
|
|
|
|
def DPT_BEiT_B_384(pretrained=True, **kwargs):
|
|
""" # This docstring shows up in hub.help()
|
|
MiDaS DPT_BEiT_B_384 model for monocular depth estimation
|
|
pretrained (bool): load pretrained weights into model
|
|
"""
|
|
|
|
model = DPTDepthModel(
|
|
path=None,
|
|
backbone="beitb16_384",
|
|
non_negative=True,
|
|
)
|
|
|
|
if pretrained:
|
|
checkpoint = (
|
|
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_base_384.pt"
|
|
)
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
|
|
return model
|
|
|
|
def DPT_SwinV2_L_384(pretrained=True, **kwargs):
|
|
""" # This docstring shows up in hub.help()
|
|
MiDaS DPT_SwinV2_L_384 model for monocular depth estimation
|
|
pretrained (bool): load pretrained weights into model
|
|
"""
|
|
|
|
model = DPTDepthModel(
|
|
path=None,
|
|
backbone="swin2l24_384",
|
|
non_negative=True,
|
|
)
|
|
|
|
if pretrained:
|
|
checkpoint = (
|
|
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_large_384.pt"
|
|
)
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
|
|
return model
|
|
|
|
def DPT_SwinV2_B_384(pretrained=True, **kwargs):
|
|
""" # This docstring shows up in hub.help()
|
|
MiDaS DPT_SwinV2_B_384 model for monocular depth estimation
|
|
pretrained (bool): load pretrained weights into model
|
|
"""
|
|
|
|
model = DPTDepthModel(
|
|
path=None,
|
|
backbone="swin2b24_384",
|
|
non_negative=True,
|
|
)
|
|
|
|
if pretrained:
|
|
checkpoint = (
|
|
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_base_384.pt"
|
|
)
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
|
|
return model
|
|
|
|
def DPT_SwinV2_T_256(pretrained=True, **kwargs):
|
|
""" # This docstring shows up in hub.help()
|
|
MiDaS DPT_SwinV2_T_256 model for monocular depth estimation
|
|
pretrained (bool): load pretrained weights into model
|
|
"""
|
|
|
|
model = DPTDepthModel(
|
|
path=None,
|
|
backbone="swin2t16_256",
|
|
non_negative=True,
|
|
)
|
|
|
|
if pretrained:
|
|
checkpoint = (
|
|
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_tiny_256.pt"
|
|
)
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
|
|
return model
|
|
|
|
def DPT_Swin_L_384(pretrained=True, **kwargs):
|
|
""" # This docstring shows up in hub.help()
|
|
MiDaS DPT_Swin_L_384 model for monocular depth estimation
|
|
pretrained (bool): load pretrained weights into model
|
|
"""
|
|
|
|
model = DPTDepthModel(
|
|
path=None,
|
|
backbone="swinl12_384",
|
|
non_negative=True,
|
|
)
|
|
|
|
if pretrained:
|
|
checkpoint = (
|
|
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin_large_384.pt"
|
|
)
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
|
|
return model
|
|
|
|
def DPT_Next_ViT_L_384(pretrained=True, **kwargs):
|
|
""" # This docstring shows up in hub.help()
|
|
MiDaS DPT_Next_ViT_L_384 model for monocular depth estimation
|
|
pretrained (bool): load pretrained weights into model
|
|
"""
|
|
|
|
model = DPTDepthModel(
|
|
path=None,
|
|
backbone="next_vit_large_6m",
|
|
non_negative=True,
|
|
)
|
|
|
|
if pretrained:
|
|
checkpoint = (
|
|
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_next_vit_large_384.pt"
|
|
)
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
|
|
return model
|
|
|
|
def DPT_LeViT_224(pretrained=True, **kwargs):
|
|
""" # This docstring shows up in hub.help()
|
|
MiDaS DPT_LeViT_224 model for monocular depth estimation
|
|
pretrained (bool): load pretrained weights into model
|
|
"""
|
|
|
|
model = DPTDepthModel(
|
|
path=None,
|
|
backbone="levit_384",
|
|
non_negative=True,
|
|
head_features_1=64,
|
|
head_features_2=8,
|
|
)
|
|
|
|
if pretrained:
|
|
checkpoint = (
|
|
"https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_levit_224.pt"
|
|
)
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
|
|
return model
|
|
|
|
def DPT_Large(pretrained=True, **kwargs):
|
|
""" # This docstring shows up in hub.help()
|
|
MiDaS DPT-Large model for monocular depth estimation
|
|
pretrained (bool): load pretrained weights into model
|
|
"""
|
|
|
|
model = DPTDepthModel(
|
|
path=None,
|
|
backbone="vitl16_384",
|
|
non_negative=True,
|
|
)
|
|
|
|
if pretrained:
|
|
checkpoint = (
|
|
"https://github.com/isl-org/MiDaS/releases/download/v3/dpt_large_384.pt"
|
|
)
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
|
|
return model
|
|
|
|
def DPT_Hybrid(pretrained=True, **kwargs):
|
|
""" # This docstring shows up in hub.help()
|
|
MiDaS DPT-Hybrid model for monocular depth estimation
|
|
pretrained (bool): load pretrained weights into model
|
|
"""
|
|
|
|
model = DPTDepthModel(
|
|
path=None,
|
|
backbone="vitb_rn50_384",
|
|
non_negative=True,
|
|
)
|
|
|
|
if pretrained:
|
|
checkpoint = (
|
|
"https://github.com/isl-org/MiDaS/releases/download/v3/dpt_hybrid_384.pt"
|
|
)
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
|
|
return model
|
|
|
|
def MiDaS(pretrained=True, **kwargs):
|
|
""" # This docstring shows up in hub.help()
|
|
MiDaS v2.1 model for monocular depth estimation
|
|
pretrained (bool): load pretrained weights into model
|
|
"""
|
|
|
|
model = MidasNet()
|
|
|
|
if pretrained:
|
|
checkpoint = (
|
|
"https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_384.pt"
|
|
)
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
|
|
return model
|
|
|
|
def MiDaS_small(pretrained=True, **kwargs):
|
|
""" # This docstring shows up in hub.help()
|
|
MiDaS v2.1 small model for monocular depth estimation on resource-constrained devices
|
|
pretrained (bool): load pretrained weights into model
|
|
"""
|
|
|
|
model = MidasNet_small(None, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True})
|
|
|
|
if pretrained:
|
|
checkpoint = (
|
|
"https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small_256.pt"
|
|
)
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
|
|
return model
|
|
|
|
|
|
def transforms():
|
|
import cv2
|
|
from torchvision.transforms import Compose
|
|
from midas.transforms import Resize, NormalizeImage, PrepareForNet
|
|
from midas import transforms
|
|
|
|
transforms.default_transform = Compose(
|
|
[
|
|
lambda img: {"image": img / 255.0},
|
|
Resize(
|
|
384,
|
|
384,
|
|
resize_target=None,
|
|
keep_aspect_ratio=True,
|
|
ensure_multiple_of=32,
|
|
resize_method="upper_bound",
|
|
image_interpolation_method=cv2.INTER_CUBIC,
|
|
),
|
|
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
|
PrepareForNet(),
|
|
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
|
|
]
|
|
)
|
|
|
|
transforms.small_transform = Compose(
|
|
[
|
|
lambda img: {"image": img / 255.0},
|
|
Resize(
|
|
256,
|
|
256,
|
|
resize_target=None,
|
|
keep_aspect_ratio=True,
|
|
ensure_multiple_of=32,
|
|
resize_method="upper_bound",
|
|
image_interpolation_method=cv2.INTER_CUBIC,
|
|
),
|
|
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
|
PrepareForNet(),
|
|
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
|
|
]
|
|
)
|
|
|
|
transforms.dpt_transform = Compose(
|
|
[
|
|
lambda img: {"image": img / 255.0},
|
|
Resize(
|
|
384,
|
|
384,
|
|
resize_target=None,
|
|
keep_aspect_ratio=True,
|
|
ensure_multiple_of=32,
|
|
resize_method="minimal",
|
|
image_interpolation_method=cv2.INTER_CUBIC,
|
|
),
|
|
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
|
PrepareForNet(),
|
|
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
|
|
]
|
|
)
|
|
|
|
transforms.beit512_transform = Compose(
|
|
[
|
|
lambda img: {"image": img / 255.0},
|
|
Resize(
|
|
512,
|
|
512,
|
|
resize_target=None,
|
|
keep_aspect_ratio=True,
|
|
ensure_multiple_of=32,
|
|
resize_method="minimal",
|
|
image_interpolation_method=cv2.INTER_CUBIC,
|
|
),
|
|
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
|
PrepareForNet(),
|
|
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
|
|
]
|
|
)
|
|
|
|
transforms.swin384_transform = Compose(
|
|
[
|
|
lambda img: {"image": img / 255.0},
|
|
Resize(
|
|
384,
|
|
384,
|
|
resize_target=None,
|
|
keep_aspect_ratio=False,
|
|
ensure_multiple_of=32,
|
|
resize_method="minimal",
|
|
image_interpolation_method=cv2.INTER_CUBIC,
|
|
),
|
|
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
|
PrepareForNet(),
|
|
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
|
|
]
|
|
)
|
|
|
|
transforms.swin256_transform = Compose(
|
|
[
|
|
lambda img: {"image": img / 255.0},
|
|
Resize(
|
|
256,
|
|
256,
|
|
resize_target=None,
|
|
keep_aspect_ratio=False,
|
|
ensure_multiple_of=32,
|
|
resize_method="minimal",
|
|
image_interpolation_method=cv2.INTER_CUBIC,
|
|
),
|
|
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
|
PrepareForNet(),
|
|
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
|
|
]
|
|
)
|
|
|
|
transforms.levit_transform = Compose(
|
|
[
|
|
lambda img: {"image": img / 255.0},
|
|
Resize(
|
|
224,
|
|
224,
|
|
resize_target=None,
|
|
keep_aspect_ratio=False,
|
|
ensure_multiple_of=32,
|
|
resize_method="minimal",
|
|
image_interpolation_method=cv2.INTER_CUBIC,
|
|
),
|
|
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
|
PrepareForNet(),
|
|
lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
|
|
]
|
|
)
|
|
|
|
return transforms
|