feat: Add prompt template resolver feature to system_prompt, ai_prompt, user_prompt

This commit is contained in:
hiro 2023-12-13 01:20:25 +07:00 committed by Louis
parent df383e3d24
commit 5f404e2c3f
No known key found for this signature in database
GPG Key ID: 44FA9F4D33C37DE2
2 changed files with 56 additions and 7 deletions

View File

@ -119,9 +119,7 @@ export type ModelSettingParams = {
embedding?: boolean
n_parallel?: number
cpu_threads?: number
system_prompt?: string
user_prompt?: string
ai_prompt?: string
prompt_template?: string
}
/**

View File

@ -46,9 +46,19 @@ async function initModel(wrapper: any): Promise<ModelOperationResponse> {
} else {
// Gather system information for CPU physical cores and memory
const nitroResourceProbe = await getResourcesInfo();
console.log(
"Nitro with physical core: " + nitroResourceProbe.numCpuPhysicalCore
);
// Convert settings.prompt_template to system_prompt, user_prompt, ai_prompt
if (wrapper.model.settings.prompt_template) {
const promptTemplate = wrapper.model.settings.prompt_template;
const prompt = promptTemplateConverter(promptTemplate);
if (prompt.error) {
return Promise.resolve({ error: prompt.error });
}
wrapper.model.settings.system_prompt = prompt.system_prompt;
wrapper.model.settings.user_prompt = prompt.user_prompt;
wrapper.model.settings.ai_prompt = prompt.ai_prompt;
}
const settings = {
llama_model_path: currentModelFile,
...wrapper.model.settings,
@ -74,12 +84,53 @@ async function initModel(wrapper: any): Promise<ModelOperationResponse> {
}
}
function promptTemplateConverter(promptTemplate) {
// Split the string using the markers
const systemMarker = "{system_message}";
const promptMarker = "{prompt}";
if (
promptTemplate.includes(systemMarker) &&
promptTemplate.includes(promptMarker)
) {
// Find the indices of the markers
const systemIndex = promptTemplate.indexOf(systemMarker);
const promptIndex = promptTemplate.indexOf(promptMarker);
// Extract the parts of the string
const system_prompt = promptTemplate.substring(0, systemIndex);
const user_prompt = promptTemplate.substring(
systemIndex + systemMarker.length,
promptIndex
);
const ai_prompt = promptTemplate.substring(
promptIndex + promptMarker.length
);
// Return the split parts
return { system_prompt, user_prompt, ai_prompt };
} else if (promptTemplate.includes(promptMarker)) {
// Extract the parts of the string for the case where only promptMarker is present
const promptIndex = promptTemplate.indexOf(promptMarker);
const user_prompt = promptTemplate.substring(0, promptIndex);
const ai_prompt = promptTemplate.substring(
promptIndex + promptMarker.length
);
const system_prompt = "";
// Return the split parts
return { system_prompt, user_prompt, ai_prompt };
}
// Return an error if none of the conditions are met
return { error: "Cannot split prompt template" };
}
/**
* Loads a LLM model into the Nitro subprocess by sending a HTTP POST request.
* @returns A Promise that resolves when the model is loaded successfully, or rejects with an error message if the model is not found or fails to load.
*/
function loadLLMModel(settings): Promise<Response> {
// Load model config
return fetchRetry(NITRO_HTTP_LOAD_MODEL_URL, {
method: "POST",
headers: {