Add internal guides to run llama.cpp and trt-lmm but don't know where to put them

This commit is contained in:
hahuyhoang411 2023-11-01 12:28:36 +07:00
parent 5288609dfc
commit 6ec8159b90
2 changed files with 95 additions and 91 deletions

View File

@ -1,11 +1,8 @@
---
title: Concepts
---
## Concepts
- Jan Platform: Desktop app/ Cloud native SaaS that can run on Linux, Windows, Mac or even Server that comes with extensibilities, toolbox and state of the art but optimized models for next gen App.
- Jan App: Next gen App built on Jan Plaform as `portable intelligence` that can be run everywhere.
- Models:
- LLM models
- Other models
- Large Language Models
- Stable Diffusion models

View File

@ -1,115 +1,122 @@
Connect to rigs
Download Pritunl
https://client.pritunl.com/#install
---
title: Internal Guidelines
---
Import the .ovpn file
# Internal Guidelines
Use Vscode to connect
Hint: You need to install "Remote-SSH" extension.
## Connecting to Rigs
### Pritunl Setup
1. **Install Pritunl**: [Download here](https://client.pritunl.com/#install)
2. **Import .ovpn file**
3. **VSCode**: Install the "Remote-SSH" extension for connection
Llama.cpp
### Llama.cpp Setup
Get llama.cpp
`
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
`
Build with cmake for faster result
`
mkdir build
cd build
# You can play with the params to find the best out of it
1. **Clone Repo**: `git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp`
2. **Build**:
```bash
mkdir build && cd build
cmake .. -DLLAMA_CUBLAS=ON -DLLAMA_CUDA_F16=ON -DLLAMA_CUDA_MMV_Y=8
cmake --build . --config Release
`
Download model
`
# Back to llama.cpp
cd ..
cd models
# This will get the llama-7b-Q8 GGUF
wget https://huggingface.co/TheBloke/Llama-2-7B-GGUF/resolve/main/llama-2-7b.Q8_0.gguf
`
`
# Back to llama.cpp
`
cd llama.cpp/build/bin/
```
3. **Download Model:**
```bash
cd ../models && wget https://huggingface.co/TheBloke/Llama-2-7B-GGUF/resolve/main/llama-2-7b.Q8_0.gguf
```
4. **Run:**
```bash
cd ../build/bin/
./main -m ./models/llama-2-7b.Q8_0.gguf -p "Writing a thesis proposal can be done in 10 simple steps:\nStep 1:" -n 2048 -e -ngl 100 -t 48
`
```
For the llama.cpp CLI arguments you could see here:
| Short Option | Long Option | Param Value | Description |
|--------------|-----------------------|-------------|-------------|
| `-h` | `--help` | | Show this help message and exit |
| `-i` | `--interactive` | | Run in interactive mode |
| | `--interactive-first` | | Run in interactive mode and wait for input right away |
| | `-ins`, `--instruct` | | Run in instruction mode (use with Alpaca models) |
| `-r` | `--reverse-prompt` | `PROMPT` | Run in interactive mode and poll user input upon seeing `PROMPT` |
| | `--color` | | Colorise output to distinguish prompt and user input from |
|**Generations**|
| `-s` | `--seed` | `SEED` | Seed for random number generator |
| `-t` | `--threads` | `N` | Number of threads to use during computation |
| `-p` | `--prompt` | `PROMPT` | Prompt to start generation with |
| | `--random-prompt` | | Start with a randomized prompt |
| | `--in-prefix` | `STRING` | String to prefix user inputs with |
| `-f` | `--file` | `FNAME` | Prompt file to start generation |
| `-n` | `--n_predict` | `N` | Number of tokens to predict |
| | `--top_k` | `N` | Top-k sampling |
| | `--top_p` | `N` | Top-p sampling |
| | `--repeat_last_n` | `N` | Last n tokens to consider for penalize |
| | `--repeat_penalty` | `N` | Penalize repeat sequence of tokens |
| `-c` | `--ctx_size` | `N` | Size of the prompt context |
| | `--ignore-eos` | | Ignore end of stream token and continue generating |
| | `--memory_f32` | | Use `f32` instead of `f16` for memory key+value |
| | `--temp` | `N` | Temperature |
| | `--n_parts` | `N` | Number of model parts |
| `-b` | `--batch_size` | `N` | Batch size for prompt processing |
| | `--perplexity` | | Compute perplexity over the prompt |
| | `--keep` | | Number of tokens to keep from the initial prompt |
| | `--mlock` | | Force system to keep model in RAM |
| | `--mtest` | | Determine the maximum memory usage |
| | `--verbose-prompt` | | Print prompt before generation |
| `-m` | `--model` | `FNAME` | Model path |
### TensorRT-LLM Setup
#### **Docker and TensorRT-LLM build**
Tensorrt-LLM
> Note: You should run with admin permission to make sure everything works fine
The following command creates a Docker image for development:
`
1. **Docker Image:**
```bash
sudo make -C docker build
`
Check docker images command:
`
docker images
`
The image will be tagged locally with tensorrt_llm/devel:latest. To run the container, use the following command:
`
```
2. **Run Container:**
```bash
sudo make -C docker run
`
```
Build TensorRT-LLM
Once in the container, TensorRT-LLM can be built from source using:
`
3. **Build:**
```bash
# To build the TensorRT-LLM code.
python3 ./scripts/build_wheel.py --trt_root /usr/local/tensorrt
# Deploy TensorRT-LLM in your environment.
pip install ./build/tensorrt_llm*.whl
`
```
It is possible to restrict the compilation of TensorRT-LLM to specific CUDA architectures. For that purpose, the build_wheel.py script accepts a semicolon separated list of CUDA architecture as shown in the following example:
> Note: You can specify the GPU achitecture (e.g. for 4090 is ADA) for compilation time reduction
> The list of supported architectures can be found in the `CMakeLists.txt` file.
# Build TensorRT-LLM for Ada (4090)
`
```bash
python3 ./scripts/build_wheel.py --cuda_architectures "89-real;90-real"
`
```
The list of supported architectures can be found in the CMakeLists.txt file.
#### Running TensorRT-LLM
1. **Requirements:**
```bash
pip install -r examples/bloom/requirements.txt && git lfs install
```
Run Tensorrt-LLM
`
pip install -r examples/bloom/requirements.txt
git lfs install
`
2. **Download Weights:**
```bash
cd examples/llama && rm -rf ./llama/7B && mkdir -p ./llama/7B && git clone https://huggingface.co/NousResearch/Llama-2-7b-hf ./llama/7B
```
Download llama weight
`
cd examples/llama
rm -rf ./llama/7B
mkdir -p ./llama/7B && git clone https://huggingface.co/NousResearch/Llama-2-7b-hf ./llama/7B
`
3. **Build Engine:**
```bash
python build.py --model_dir ./llama/7B/ --dtype float16 --remove_input_padding --use_gpt_attention_plugin float16 --enable_context_fmha --use_gemm_plugin float16 --use_weight_only --output_dir ./llama/7B/trt_engines/weight_only/1-gpu/
```
Build the engine with Single GPU on Llama 7B
`
python build.py --model_dir ./llama/7B/ \
--dtype float16 \
--remove_input_padding \
--use_gpt_attention_plugin float16 \
--enable_context_fmha \
--use_gemm_plugin float16 \
--use_weight_only \
--output_dir ./llama/7B/trt_engines/weight_only/1-gpu/
`
4. Run Inference:
```bash
python3 run.py --max_output_len=2048 --tokenizer_dir ./llama/7B/ --engine_dir=./llama/7B/trt_engines/weight_only/1-gpu/ --input_text "Writing a thesis proposal can be done in 10 simple steps:\nStep 1:"
```
Run inference. Use custom `run.py` to check the tokens/seconds
`
python3 run.py --max_output_len=2048 \
--tokenizer_dir ./llama/7B/ \
--engine_dir=./llama/7B/trt_engines/weight_only/1-gpu/
--input_text Writing a thesis proposal can be done in 10 simple steps:\nStep 1:
`
For the tensorRT-LLM CLI arguments you could see in the `run.py`