docs: update the content of integration & add discord + openinterpreter
This commit is contained in:
parent
b4e2ee72bb
commit
b081a91ca3
@ -2,19 +2,15 @@
|
||||
sidebar_position: 3
|
||||
---
|
||||
|
||||
import azure from './img/azure.png';
|
||||
import azure from './assets/azure.png';
|
||||
|
||||
# Azure Raycast
|
||||
# Azure OpenAI
|
||||
|
||||
## Overview
|
||||
|
||||
This guide will show you how to integrate Azure OpenAI Service with Jan. The [Azure OpenAI Service](https://learn.microsoft.com/en-us/azure/ai-services/openai/overview?source=docs) offers robust APIs, making it simple for you to incorporate OpenAI's language models into your applications.
|
||||
|
||||
## How to Integrate Azure
|
||||
|
||||
<div class="text--center">
|
||||
<img src={azure} width={800} alt="azure" />
|
||||
</div>
|
||||
## How to Integrate Azure OpenAI with Jan
|
||||
|
||||
### Step 1: Configure Azure OpenAI Service API Key
|
||||
|
||||
@ -31,16 +27,15 @@ This guide will show you how to integrate Azure OpenAI Service with Jan. The [Az
|
||||
}
|
||||
```
|
||||
|
||||
### Step 2: Modify a JSON Model
|
||||
### Step 2: Model Configuration
|
||||
|
||||
1. Go to the `~/jan/models` directory.
|
||||
2. Make a new folder called `(your-deployment-name)`, like `gpt-35-hieu-jan`.
|
||||
3. Create a `model.json` file inside the folder with the specified configurations:
|
||||
- Ensure the file is named `model.json`.
|
||||
- Match the `id` property with both the folder name and your deployment name.
|
||||
- Set the `format` property as `api`.
|
||||
- Choose `openai` for the `engine` property.
|
||||
- Set the `state` property as `ready`.
|
||||
- Match the `id` property with both the folder name and your deployment name.
|
||||
- Set the `format` property as `api`.
|
||||
- Choose `openai` for the `engine` property.
|
||||
- Set the `state` property as `ready`.
|
||||
|
||||
```json title="~/jan/models/gpt-35-hieu-jan/model.json"
|
||||
{
|
||||
@ -66,6 +61,28 @@ This guide will show you how to integrate Azure OpenAI Service with Jan. The [Az
|
||||
}
|
||||
```
|
||||
|
||||
#### Regarding `model.json`
|
||||
|
||||
- In `settings`, two crucial values are:
|
||||
- `ctx_len`: Defined based on the model's context size.
|
||||
- `prompt_template`: Defined based on the model's trained template (e.g., ChatML, Alpaca).
|
||||
- To set up the `prompt_template`:
|
||||
1. Visit Hugging Face.
|
||||
2. Locate the model (e.g., [Gemma 7b it](https://huggingface.co/google/gemma-7b-it)).
|
||||
3. Review the text and identify the template.
|
||||
- In `parameters`, consider the following options. The fields in `parameters` are typically general and can be the same across models. An example is provided below:
|
||||
|
||||
```json
|
||||
"parameters":{
|
||||
"temperature": 0.7,
|
||||
"top_p": 0.95,
|
||||
"stream": true,
|
||||
"max_tokens": 4096,
|
||||
"frequency_penalty": 0,
|
||||
"presence_penalty": 0
|
||||
}
|
||||
```
|
||||
|
||||
### Step 3: Start the Model
|
||||
|
||||
Restart Jan and go to the Hub. Find your model and click on the Use button.
|
||||
60
docs/docs/quickstart/integration/discord.mdx
Normal file
60
docs/docs/quickstart/integration/discord.mdx
Normal file
@ -0,0 +1,60 @@
|
||||
---
|
||||
sidebar_position: 5
|
||||
---
|
||||
|
||||
import discord_repo from './assets/jan-ai-discord-repo.png';
|
||||
|
||||
# Discord
|
||||
|
||||
## Overview
|
||||
|
||||
This tutorial demonstrates the process of integrating with a Discord bot using Jan.
|
||||
|
||||
Using a Discord bot enhances server interaction. Integrating Jan with it can significantly boost responsiveness and user engagement.
|
||||
|
||||
## How to Integrate Discord Bot with Jan
|
||||
|
||||
### Step 1: Clone the repository
|
||||
|
||||
To make this integration successful, it is necessary to clone the discord bot's [repository](https://github.com/jakobdylanc/discord-llm-chatbot).
|
||||
|
||||
<div class="text--center">
|
||||
<img src={discord_repo} width={600} alt="jan-ai-discord-repo" />
|
||||
</div>
|
||||
|
||||
### Step 2: Install the requirement libraries
|
||||
|
||||
After cloning the repository, run the following command:
|
||||
|
||||
```sh
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Step 3: Create a copy of `.env.example`, named `.env`, and set it up
|
||||
|
||||
| Setting | Instructions |
|
||||
| ------- | ------------ |
|
||||
| DISCORD_BOT_TOKEN | Generate a new Discord application at [discord.com/developers/applications](https://discord.com/developers/applications), obtain a token from the Bot tab, and enable MESSAGE CONTENT INTENT. |
|
||||
| LLM | For [Jan](https://jan.ai/), set to `local/openai/(MODEL_NAME)`, where `(MODEL_NAME)` is your loaded model's name. |
|
||||
| CUSTOM_SYSTEM_PROMPT | Adjust the bot's behavior as needed. |
|
||||
| CUSTOM_DISCORD_STATUS | Set a custom message for the bot's Discord profile. (Max 128 characters) |
|
||||
| ALLOWED_CHANNEL_IDS | Enter Discord channel IDs where the bot can send messages, separated by commas. Leave blank to allow all channels. |
|
||||
| ALLOWED_ROLE_IDS | Enter Discord role IDs allowed to use the bot, separated by commas. Leave blank to allow everyone. Including at least one role also disables DMs. |
|
||||
| MAX_IMAGES | Max number of image attachments allowed per message when using a vision model. (Default: `5`) |
|
||||
| MAX_MESSAGES | Max messages allowed in a reply chain. (Default: `20`) |
|
||||
| LOCAL_SERVER_URL | URL of your local API server for LLMs starting with `local/`. (Default: `http://localhost:5000/v1`) |
|
||||
| LOCAL_API_KEY | API key for your local API server with LLMs starting with `local/`. Usually safe to leave blank. |
|
||||
|
||||
### Step 4: Invite the bot to your Discord server using this URL (replace `CLIENT_ID` with your Discord application's client ID from the OAuth2 tab)
|
||||
|
||||
```
|
||||
https://discord.com/api/oauth2/authorize?client_id=(CLIENT_ID)&permissions=412317273088&scope=bot
|
||||
```
|
||||
|
||||
### STep 5: Run the bot
|
||||
|
||||
Run the bot by using the following command in your command prompt:
|
||||
|
||||
```sh
|
||||
python llmcord.py
|
||||
```
|
||||
49
docs/docs/quickstart/integration/openinterpreter.mdx
Normal file
49
docs/docs/quickstart/integration/openinterpreter.mdx
Normal file
@ -0,0 +1,49 @@
|
||||
---
|
||||
sidebar_position: 6
|
||||
---
|
||||
|
||||
# Open Interpreter
|
||||
|
||||
## Overview
|
||||
|
||||
This tutorial illustrates how to integrate with Open Interpreter using Jan. [Open Interpreter](https://github.com/KillianLucas/open-interpreter/) lets LLMs run code (Python, Javascript, Shell, and more) locally. You can chat with Open Interpreter through a ChatGPT-like interface in your terminal by running `interpreter` after installing.
|
||||
|
||||
## How to Integrate Open Interpreter with Jan
|
||||
|
||||
### Step 1: Install Open Interpreter
|
||||
|
||||
Install Open Interpreter by running:
|
||||
|
||||
```sh
|
||||
pip install open-interpreter
|
||||
```
|
||||
|
||||
A Rust compiler is required to install Open Interpreter. If not already installed, run the following command or go to [this page](https://rustup.rs/) if you are running on windows:
|
||||
|
||||
```zsh
|
||||
sudo apt install rustc
|
||||
```
|
||||
|
||||
### Step 2: Configure Jan's Local API Server
|
||||
|
||||
Before using Open Interpreter, configure the model in `Settings` > `My Model` for Jan and activate its local API server.
|
||||
|
||||
#### Enabling Jan API Server
|
||||
|
||||
1. Click the `<>` button to access the **Local API Server** section in Jan.
|
||||
|
||||
2. Configure the server settings, including **IP Port**, **Cross-Origin-Resource-Sharing (CORS)**, and **Verbose Server Logs**.
|
||||
|
||||
3. Click **Start Server**.
|
||||
|
||||
### Step 3: Run Open Interpreter with Specific Parameters
|
||||
|
||||
For integration, provide the API Base (`http://localhost:1337/v1`) and the model ID (e.g., `mistral-ins-7b-q4`) when running Open Interpreter.
|
||||
|
||||
For instance, if using **Mistral Instruct 7B Q4** as the model, execute:
|
||||
|
||||
```zsh
|
||||
interpreter --api_base http://localhost:1337/v1 --model mistral-ins-7b-q4
|
||||
```
|
||||
|
||||
Open Interpreter is now ready for use!
|
||||
@ -2,8 +2,8 @@
|
||||
sidebar_position: 2
|
||||
---
|
||||
|
||||
import openrouterGIF from './img/jan-ai-openrouter.gif';
|
||||
import openrouter from './img/openrouter.png';
|
||||
import openrouterGIF from './assets/jan-ai-openrouter.gif';
|
||||
import openrouter from './assets/openrouter.png';
|
||||
|
||||
# OpenRouter
|
||||
|
||||
@ -13,10 +13,6 @@ This guide will show you how to integrate OpenRouter with Jan, allowing you to u
|
||||
|
||||
## How to Integrate OpenRouter
|
||||
|
||||
<div class="text--center">
|
||||
<img src={openrouter} width={800} alt="openrouter" />
|
||||
</div>
|
||||
|
||||
### Step 1: Configure OpenRouter API key
|
||||
|
||||
1. Find your API keys in the OpenRouter API Key.
|
||||
|
||||
@ -2,8 +2,8 @@
|
||||
sidebar_position: 4
|
||||
---
|
||||
|
||||
import raycast from './img/raycast.png';
|
||||
import raycastImage from './img/raycast-image.png';
|
||||
import raycast from './assets/raycast.png';
|
||||
import raycastImage from './assets/raycast-image.png';
|
||||
|
||||
# Raycast
|
||||
|
||||
@ -12,10 +12,6 @@ import raycastImage from './img/raycast-image.png';
|
||||
|
||||
## How to Integrate Raycast
|
||||
|
||||
<div class="text--center">
|
||||
<img src={raycast} width={800} alt="raycast" />
|
||||
</div>
|
||||
|
||||
### Step 1: Download the TinyLlama model from Jan
|
||||
|
||||
Go to the **Hub** and download the TinyLlama model. The model will be available at `~jan/models/tinyllama-1.1b`.
|
||||
|
||||
@ -1,9 +1,9 @@
|
||||
---
|
||||
sidebar_position: 1
|
||||
---
|
||||
import continue_ask from './img/jan-ai-continue-ask.png';
|
||||
import continue_comment from './img/jan-ai-continue-comment.gif';
|
||||
import vscode from './img/vscode.png';
|
||||
import continue_ask from './assets/jan-ai-continue-ask.png';
|
||||
import continue_comment from './assets/jan-ai-continue-comment.gif';
|
||||
import vscode from './assets/vscode.png';
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
@ -13,11 +13,7 @@ import TabItem from '@theme/TabItem';
|
||||
|
||||
This guide showcases integrating Continue with Jan and VS Code to boost your coding using the local AI language model's features. [Continue](https://continue.dev/docs/intro) is an open-source autopilot compatible with Visual Studio Code and JetBrains, offering the simplest method to code with any LLM (Local Language Model).
|
||||
|
||||
## How to Integrate with Continue
|
||||
|
||||
<div class="text--center">
|
||||
<img src={vscode} width={800} alt="vscode" />
|
||||
</div>
|
||||
## How to Integrate with Continue VS Code
|
||||
|
||||
### Step 1: Installing Continue on Visal Studio Code
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user