Partial restructure of Models Spec
This commit is contained in:
parent
17258192e8
commit
b321427b34
@ -1,3 +1,11 @@
|
||||
---
|
||||
title: How Jan Works
|
||||
---
|
||||
|
||||
- Local Filesystem
|
||||
Follow-on from Quickstart to show how things actually worked
|
||||
Write in a conversational style, show how things work under the hood
|
||||
Check how filesystem changed after each request
|
||||
- Model loading into RAM/VRAM
|
||||
Explain how the .bin file is loaded via Llama.cpp
|
||||
Explain how it consumes RAM and VRAM, and refer to system monitor
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
---
|
||||
title: "Fine tuning"
|
||||
title: "Fine-tuning"
|
||||
---
|
||||
Todo: @hiro
|
||||
@ -10,56 +10,103 @@ Feedback: [HackMD: Models Spec](https://hackmd.io/ulO3uB1AQCqLa5SAAMFOQw)
|
||||
|
||||
:::
|
||||
|
||||
Models are AI models like Llama and Mistral
|
||||
## Overview
|
||||
|
||||
> OpenAI Equivalent: https://platform.openai.com/docs/api-reference/models
|
||||
Jan's Model API aims to be as similar as possible to [OpenAI's Models API](https://platform.openai.com/docs/api-reference/models), with additional methods for managing and running models locally.
|
||||
|
||||
## User Stories
|
||||
### User Objectives
|
||||
|
||||
_Users can download a model via a web URL_
|
||||
- Users can start/stop models and use them in a thread (or via Chat Completions API)
|
||||
- Users can download, import and delete models
|
||||
- User can configure model settings at the model level or override it at thread-level
|
||||
- Users can use remote models (e.g. OpenAI, OpenRouter)
|
||||
|
||||
- Wireframes here
|
||||
## Models Folder
|
||||
|
||||
_Users can import a model from local directory_
|
||||
Models in Jan are stored in the `/models` folder.
|
||||
|
||||
- Wireframes here
|
||||
`<model-name>.json` files.
|
||||
|
||||
_Users can configure model settings, like run parameters_
|
||||
- Everything needed to represent a `model` is packaged into an `Model folder`.
|
||||
- The `folder` is standalone and can be easily zipped, imported, and exported, e.g. to Github.
|
||||
- The `folder` always contains at least one `Model Object`, declared in a `json` format.
|
||||
- The `folder` and `file` do not have to share the same name
|
||||
- The model `id` is made up of `folder_name/filename` and is thus always unique.
|
||||
|
||||
- Wireframes here
|
||||
```sh
|
||||
/janroot
|
||||
/models
|
||||
azure-openai/ # Folder name
|
||||
azure-openai-gpt3-5.json # File name
|
||||
|
||||
_Users can override run settings at runtime_
|
||||
llama2-70b/
|
||||
model.json
|
||||
.gguf
|
||||
```
|
||||
|
||||
- See Assistant Spec and Thread
|
||||
## Model Object
|
||||
|
||||
## Jan Model Object
|
||||
Models in Jan are represented as `json` objects, and are colloquially known as `model.jsons`.
|
||||
|
||||
- A `Jan Model Object` is a “representation" of a model
|
||||
- Objects are defined by `model-name.json` files in `json` format
|
||||
- Objects are identified by `folder-name/model-name`, where its `id` is indicative of its file location.
|
||||
- Objects are designed to be compatible with `OpenAI Model Objects`, with additional properties needed to run on our infrastructure.
|
||||
- ALL object properties are optional, i.e. users should be able to run a model declared by an empty `json` file.
|
||||
Jan's models follow a `<model_name>.json` naming convention.
|
||||
|
||||
Jan's `model.json` aims for rough equivalence with [OpenAI's Model Object](https://platform.openai.com/docs/api-reference/models/object), and add additional properties to support local models.
|
||||
|
||||
Jan's `model.json` object properties are optional, i.e. users should be able to run a model declared by an empty `json` file.
|
||||
|
||||
```json
|
||||
// ./models/zephr/zephyr-7b-beta-Q4_K_M.json
|
||||
{
|
||||
"source_url": "https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF/blob/main/zephyr-7b-beta.Q4_K_M.gguf",
|
||||
"parameters": {
|
||||
"init": {
|
||||
"ctx_len": "2048",
|
||||
"ngl": "100",
|
||||
"embedding": "true",
|
||||
"n_parallel": "4",
|
||||
"pre_prompt": "A chat between a curious user and an artificial intelligence",
|
||||
"user_prompt": "USER: ",
|
||||
"ai_prompt": "ASSISTANT: "
|
||||
},
|
||||
"runtime": {
|
||||
"temperature": "0.7",
|
||||
"token_limit": "2048",
|
||||
"top_k": "0",
|
||||
"top_p": "1",
|
||||
"stream": "true"
|
||||
}
|
||||
},
|
||||
"metadata": {
|
||||
"engine": "llamacpp",
|
||||
"quantization": "Q4_K_M",
|
||||
"size": "7B",
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
| Property | Type | Description | Validation |
|
||||
| ----------------------- | ------------------------------------------------------------- | ------------------------------------------------------------------------- | ------------------------------------------------ |
|
||||
| `source_url` | string | The model download source. It can be an external url or a local filepath. | Defaults to `pwd`. See [Source_url](#Source_url) |
|
||||
| `object` | enum: `model`, `assistant`, `thread`, `message` | Type of the Jan Object. Always `model` | Defaults to "model" |
|
||||
| `name` | string | A vanity name | Defaults to filename |
|
||||
| `description` | string | A vanity description of the model | Defaults to "" |
|
||||
| `state` | enum[`to_download` , `downloading`, `ready` , `running`] | Needs more thought | Defaults to `to_download` |
|
||||
| `source_url` | string | The model download source. It can be an external url or a local filepath. | Defaults to `pwd`. See [Source_url](#Source_url) |
|
||||
| `parameters` | map | Defines default model run parameters used by any assistant. | Defaults to `{}` |
|
||||
| `description` | string | A vanity description of the model | Defaults to "" |
|
||||
| `metadata` | map | Stores additional structured information about the model. | Defaults to `{}` |
|
||||
| `metadata.engine` | enum: `llamacpp`, `api`, `tensorrt` | The model backend used to run model. | Defaults to "llamacpp" |
|
||||
| `metadata.quantization` | string | Supported formats only | See [Custom importers](#Custom-importers) |
|
||||
| `metadata.binaries` | array | Supported formats only. | See [Custom importers](#Custom-importers) |
|
||||
| `state` | enum[`to_download` , `downloading`, `ready` , `running`] | Needs more thought | Defaults to `to_download` |
|
||||
| `name` | string | A vanity name | Defaults to filename |
|
||||
|
||||
### Source_url
|
||||
### Model Source
|
||||
|
||||
There are 3 types of model sources
|
||||
|
||||
- Local model
|
||||
- Remote source
|
||||
- Cloud API
|
||||
|
||||
- Users can download models from a `remote` source or reference an existing `local` model.
|
||||
- If this property is not specified in the Model Object file, then the default behavior is to look in the current directory.
|
||||
|
||||
#### Local source_url
|
||||
|
||||
- Users can import a local model by providing the filepath to the model
|
||||
|
||||
```json
|
||||
@ -70,14 +117,36 @@ _Users can override run settings at runtime_
|
||||
"source_url": "./",
|
||||
```
|
||||
|
||||
#### Remote source_url
|
||||
|
||||
- Users can download a model by remote URL.
|
||||
- Supported url formats:
|
||||
- `https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q3_K_L.gguf`
|
||||
- `https://any-source.com/.../model-binary.bin`
|
||||
|
||||
#### Custom importers
|
||||
- Using a remote API to access model `model-azure-openai-gpt4-turbo.json`
|
||||
- See [source](https://learn.microsoft.com/en-us/azure/ai-services/openai/quickstart?tabs=command-line%2Cpython&pivots=rest-api)
|
||||
|
||||
```json
|
||||
"source_url": "https://docs-test-001.openai.azure.com/openai.azure.com/docs-test-001/gpt4-turbo",
|
||||
"parameters": {
|
||||
"init" {
|
||||
"API-KEY": "",
|
||||
"DEPLOYMENT-NAME": "",
|
||||
"api-version": "2023-05-15"
|
||||
},
|
||||
"runtime": {
|
||||
"temperature": "0.7",
|
||||
"max_tokens": "2048",
|
||||
"presence_penalty": "0",
|
||||
"top_p": "1",
|
||||
"stream": "true"
|
||||
}
|
||||
}
|
||||
"metadata": {
|
||||
"engine": "api",
|
||||
}
|
||||
```
|
||||
|
||||
### Model Formats
|
||||
|
||||
Additionally, Jan supports importing popular formats. For example, if you provide a HuggingFace URL for a `TheBloke` model, Jan automatically downloads and catalogs all quantizations. Custom importers autofills properties like `metadata.quantization` and `metadata.size`.
|
||||
|
||||
@ -89,7 +158,8 @@ Supported URL formats with custom importers:
|
||||
- `azure_openai`: `https://docs-test-001.openai.azure.com/openai.azure.com/docs-test-001/gpt4-turbo`
|
||||
- `openai`: `api.openai.com`
|
||||
|
||||
### Generic Example
|
||||
<details>
|
||||
<summary>Example: Zephyr 7B</summary>
|
||||
|
||||
- Model has 1 binary `model-zephyr-7B.json`
|
||||
- See [source](https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF/)
|
||||
@ -122,8 +192,9 @@ Supported URL formats with custom importers:
|
||||
"size": "7B",
|
||||
}
|
||||
```
|
||||
</details>
|
||||
|
||||
### Example: multiple binaries
|
||||
### Multiple binaries
|
||||
|
||||
- Model has multiple binaries `model-llava-1.5-ggml.json`
|
||||
- See [source](https://huggingface.co/mys/ggml_llava-v1.5-13b)
|
||||
@ -139,112 +210,24 @@ Supported URL formats with custom importers:
|
||||
}
|
||||
```
|
||||
|
||||
### Example: Azure API
|
||||
## Models API
|
||||
|
||||
- Using a remote API to access model `model-azure-openai-gpt4-turbo.json`
|
||||
- See [source](https://learn.microsoft.com/en-us/azure/ai-services/openai/quickstart?tabs=command-line%2Cpython&pivots=rest-api)
|
||||
### Get Model
|
||||
|
||||
```json
|
||||
"source_url": "https://docs-test-001.openai.azure.com/openai.azure.com/docs-test-001/gpt4-turbo",
|
||||
"parameters": {
|
||||
"init" {
|
||||
"API-KEY": "",
|
||||
"DEPLOYMENT-NAME": "",
|
||||
"api-version": "2023-05-15"
|
||||
},
|
||||
"runtime": {
|
||||
"temperature": "0.7",
|
||||
"max_tokens": "2048",
|
||||
"presence_penalty": "0",
|
||||
"top_p": "1",
|
||||
"stream": "true"
|
||||
}
|
||||
}
|
||||
"metadata": {
|
||||
"engine": "api",
|
||||
}
|
||||
```
|
||||
|
||||
## Filesystem
|
||||
|
||||
- Everything needed to represent a `model` is packaged into an `Model folder`.
|
||||
- The `folder` is standalone and can be easily zipped, imported, and exported, e.g. to Github.
|
||||
- The `folder` always contains at least one `Model Object`, declared in a `json` format.
|
||||
- The `folder` and `file` do not have to share the same name
|
||||
- The model `id` is made up of `folder_name/filename` and is thus always unique.
|
||||
|
||||
```sh
|
||||
/janroot
|
||||
/models
|
||||
azure-openai/ # Folder name
|
||||
azure-openai-gpt3-5.json # File name
|
||||
|
||||
llama2-70b/
|
||||
model.json
|
||||
.gguf
|
||||
```
|
||||
|
||||
### Default ./model folder
|
||||
- Jan ships with a default model folders containing recommended models
|
||||
- Only the Model Object `json` files are included
|
||||
- Users must later explicitly download the model binaries
|
||||
```sh
|
||||
models/
|
||||
mistral-7b/
|
||||
mistral-7b.json
|
||||
hermes-7b/
|
||||
hermes-7b.json
|
||||
```
|
||||
### Multiple quantizations
|
||||
|
||||
- Each quantization has its own `Jan Model Object` file
|
||||
|
||||
```sh
|
||||
llama2-7b-gguf/
|
||||
llama2-7b-gguf-Q2.json
|
||||
llama2-7b-gguf-Q3_K_L.json
|
||||
.bin
|
||||
```
|
||||
### Multiple model partitions
|
||||
|
||||
- A Model that is partitioned into several binaries use just 1 file
|
||||
|
||||
```sh
|
||||
llava-ggml/
|
||||
llava-ggml-Q5.json
|
||||
.proj
|
||||
ggml
|
||||
```
|
||||
### Your locally fine-tuned model
|
||||
|
||||
- ??
|
||||
|
||||
```sh
|
||||
llama-70b-finetune/
|
||||
llama-70b-finetune-q5.json
|
||||
.bin
|
||||
```
|
||||
## Jan API
|
||||
### Model API Object
|
||||
- OpenAI Equivalent: https://platform.openai.com/docs/api-reference/models/retrieve
|
||||
- OpenAI Equivalent: https://platform.openai.com/docs/api-reference/models/object
|
||||
- The `Jan Model Object` maps into the `OpenAI Model Object`.
|
||||
- Properties marked with `*` are compatible with the [OpenAI `model` object](https://platform.openai.com/docs/api-reference/models)
|
||||
- Note: The `Jan Model Object` has additional properties when retrieved via its API endpoint.
|
||||
> OpenAI Equivalent: https://platform.openai.com/docs/api-reference/models/object
|
||||
|
||||
### Model lifecycle
|
||||
Model has 4 states (enum)
|
||||
- `to_download`
|
||||
- `downloading`
|
||||
- `ready`
|
||||
- `running`
|
||||
#### Request
|
||||
|
||||
### Get Model
|
||||
> OpenAI Equivalent: https://platform.openai.com/docs/api-reference/models/retrieve
|
||||
- Example request
|
||||
```shell
|
||||
curl {JAN_URL}/v1/models/{model_id}
|
||||
```
|
||||
- Example response
|
||||
|
||||
#### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "model-zephyr-7B",
|
||||
@ -273,14 +256,19 @@ curl {JAN_URL}/v1/models/{model_id}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### List models
|
||||
Lists the currently available models, and provides basic information about each one such as the owner and availability.
|
||||
> OpenAI Equivalent: https://platform.openai.com/docs/api-reference/models/list
|
||||
- Example request
|
||||
|
||||
#### Request
|
||||
|
||||
```shell=
|
||||
curl {JAN_URL}/v1/models
|
||||
```
|
||||
- Example response
|
||||
|
||||
#### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"object": "list",
|
||||
@ -310,13 +298,18 @@ curl {JAN_URL}/v1/models
|
||||
"object": "list"
|
||||
}
|
||||
```
|
||||
|
||||
### Delete Model
|
||||
> OpenAI Equivalent: https://platform.openai.com/docs/api-reference/models/delete
|
||||
`- Example request
|
||||
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl -X DELETE {JAN_URL}/v1/models/{model_id}
|
||||
```
|
||||
- Example response
|
||||
|
||||
#### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "model-zephyr-7B",
|
||||
@ -325,14 +318,19 @@ curl -X DELETE {JAN_URL}/v1/models/{model_id}
|
||||
"state": "to_download"
|
||||
}
|
||||
```
|
||||
|
||||
### Start Model
|
||||
> Jan-only endpoint
|
||||
The request to start `model` by changing model state from `ready` to `running`
|
||||
- Example request
|
||||
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl -X PUT {JAN_URL}/v1/models{model_id}/start
|
||||
```
|
||||
- Example response
|
||||
|
||||
#### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "model-zephyr-7B",
|
||||
@ -340,14 +338,19 @@ curl -X PUT {JAN_URL}/v1/models{model_id}/start
|
||||
"state": "running"
|
||||
}
|
||||
```
|
||||
|
||||
### Stop Model
|
||||
> Jan-only endpoint
|
||||
The request to start `model` by changing model state from `running` to `ready`
|
||||
- Example request
|
||||
|
||||
#### Request
|
||||
|
||||
```shell
|
||||
curl -X PUT {JAN_URL}/v1/models/{model_id}/stop
|
||||
```
|
||||
- Example response
|
||||
|
||||
#### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "model-zephyr-7B",
|
||||
@ -355,14 +358,17 @@ curl -X PUT {JAN_URL}/v1/models/{model_id}/stop
|
||||
"state": "ready"
|
||||
}
|
||||
```
|
||||
|
||||
### Download Model
|
||||
> Jan-only endpoint
|
||||
The request to download `model` by changing model state from `to_download` to `downloading` then `ready`once it's done.
|
||||
- Example request
|
||||
|
||||
#### Request
|
||||
```shell
|
||||
curl -X POST {JAN_URL}/v1/models/
|
||||
```
|
||||
- Example response
|
||||
|
||||
#### Response
|
||||
```json
|
||||
{
|
||||
"id": "model-zephyr-7B",
|
||||
@ -370,3 +376,77 @@ curl -X POST {JAN_URL}/v1/models/
|
||||
"state": "downloading"
|
||||
}
|
||||
```
|
||||
|
||||
## Examples
|
||||
|
||||
### Pre-loaded Models
|
||||
|
||||
- Jan ships with a default model folders containing recommended models
|
||||
- Only the Model Object `json` files are included
|
||||
- Users must later explicitly download the model binaries
|
||||
-
|
||||
```sh
|
||||
models/
|
||||
mistral-7b/
|
||||
mistral-7b.json
|
||||
hermes-7b/
|
||||
hermes-7b.json
|
||||
```
|
||||
|
||||
### Azure OpenAI
|
||||
|
||||
- Using a remote API to access model `model-azure-openai-gpt4-turbo.json`
|
||||
- See [source](https://learn.microsoft.com/en-us/azure/ai-services/openai/quickstart?tabs=command-line%2Cpython&pivots=rest-api)
|
||||
|
||||
```json
|
||||
"source_url": "https://docs-test-001.openai.azure.com/openai.azure.com/docs-test-001/gpt4-turbo",
|
||||
"parameters": {
|
||||
"init" {
|
||||
"API-KEY": "",
|
||||
"DEPLOYMENT-NAME": "",
|
||||
"api-version": "2023-05-15"
|
||||
},
|
||||
"runtime": {
|
||||
"temperature": "0.7",
|
||||
"max_tokens": "2048",
|
||||
"presence_penalty": "0",
|
||||
"top_p": "1",
|
||||
"stream": "true"
|
||||
}
|
||||
}
|
||||
"metadata": {
|
||||
"engine": "api",
|
||||
}
|
||||
```
|
||||
|
||||
### Multiple quantizations
|
||||
|
||||
- Each quantization has its own `Jan Model Object` file
|
||||
|
||||
```sh
|
||||
llama2-7b-gguf/
|
||||
llama2-7b-gguf-Q2.json
|
||||
llama2-7b-gguf-Q3_K_L.json
|
||||
.bin
|
||||
```
|
||||
|
||||
### Multiple model partitions
|
||||
|
||||
- A Model that is partitioned into several binaries use just 1 file
|
||||
|
||||
```sh
|
||||
llava-ggml/
|
||||
llava-ggml-Q5.json
|
||||
.proj
|
||||
ggml
|
||||
```
|
||||
|
||||
### Your locally fine-tuned model
|
||||
|
||||
- ??
|
||||
|
||||
```sh
|
||||
llama-70b-finetune/
|
||||
llama-70b-finetune-q5.json
|
||||
.bin
|
||||
```
|
||||
7
docs/docs/specs/prompts.md
Normal file
7
docs/docs/specs/prompts.md
Normal file
@ -0,0 +1,7 @@
|
||||
---
|
||||
title: Prompts
|
||||
---
|
||||
|
||||
- [ ] /prompts folder
|
||||
- [ ] How to add to prompts
|
||||
- [ ] Assistants can have suggested Prompts
|
||||
@ -1,3 +1,5 @@
|
||||
---
|
||||
title: Settings
|
||||
---
|
||||
|
||||
- [ ] .jan folder in jan root
|
||||
@ -68,6 +68,7 @@ const sidebars = {
|
||||
"specs/jan",
|
||||
"specs/fine-tuning",
|
||||
"specs/settings",
|
||||
"specs/prompts",
|
||||
],
|
||||
},
|
||||
],
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user