Merge pull request #18 from janhq/fix_inference
Fix inference service - ggml (LLM + SD)
This commit is contained in:
commit
b61536aa67
21
README.md
21
README.md
@ -52,6 +52,15 @@ Jan is a free, source-available and [fair code licensed](https://faircode.io/) A
|
||||
|
||||
Jan offers an [Docker Compose](https://docs.docker.com/compose/) deployment that automates the setup process.
|
||||
|
||||
```bash
|
||||
# Download models
|
||||
# Runway SD 1.5
|
||||
wget https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors -P jan-inference/sd/models
|
||||
|
||||
# Download LLM
|
||||
wget https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/resolve/main/llama-2-7b-chat.ggmlv3.q4_1.bin -P jan-inference/llm/models
|
||||
``````
|
||||
|
||||
Run the following command to start all the services defined in the `docker-compose.yml`
|
||||
|
||||
```shell
|
||||
@ -102,14 +111,4 @@ Jan is a monorepo that pulls in the following submodules
|
||||
|
||||
## Live Demo
|
||||
|
||||
You can access the live demo at https://cloud.jan.ai.
|
||||
|
||||
## Common Issues and Troubleshooting
|
||||
|
||||
**Error in `jan-inference` service** 
|
||||
|
||||
- Error: download model incomplete
|
||||
- Solution:
|
||||
- Manually download the LLM model using the URL specified in the environment variable `MODEL_URL` within the `.env` file. The URL is typically https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/resolve/main/llama-2-7b-chat.ggmlv3.q4_1.bin
|
||||
- Copy the downloaded file `llama-2-7b-chat.ggmlv3.q4_1.bin` to the folder `jan-inference/llm/models`
|
||||
- Run `docker compose down` followed by `docker compose up -d` again to restart the services.
|
||||
You can access the live demo at https://cloud.jan.ai.
|
||||
@ -125,7 +125,6 @@ services:
|
||||
timeout: 10s
|
||||
retries: 5
|
||||
start_period: 5s
|
||||
|
||||
networks:
|
||||
jan_community:
|
||||
ipv4_address: 172.20.0.14
|
||||
@ -152,39 +151,9 @@ services:
|
||||
jan_community:
|
||||
ipv4_address: 172.20.0.15
|
||||
|
||||
# Service to download a model file.
|
||||
downloader:
|
||||
image: busybox
|
||||
# The command extracts the model filename from MODEL_URL and downloads it if it doesn't exist.
|
||||
command: /bin/sh -c "LLM_MODEL_FILE=$(basename ${MODEL_URL}); if [ ! -f /models/$LLM_MODEL_FILE ]; then wget -O /models/$LLM_MODEL_FILE ${MODEL_URL}; fi"
|
||||
# Mount a local directory to store the downloaded model.
|
||||
volumes:
|
||||
- ./jan-inference/llm/models:/models
|
||||
|
||||
networks:
|
||||
jan_community:
|
||||
ipv4_address: 172.20.0.16
|
||||
|
||||
# Service to wait for the downloader service to finish downloading the model.
|
||||
wait-for-downloader:
|
||||
image: busybox
|
||||
# The command waits until the model file (specified in MODEL_URL) exists.
|
||||
command: /bin/sh -c "LLM_MODEL_FILE=$(basename ${MODEL_URL}); echo 'Waiting for downloader to finish'; while [ ! -f /models/$LLM_MODEL_FILE ]; do sleep 1; done; echo 'Model downloaded!'"
|
||||
# Specifies that this service should start after the downloader service has started.
|
||||
depends_on:
|
||||
downloader:
|
||||
condition: service_started
|
||||
# Mount the same local directory to check for the downloaded model.
|
||||
volumes:
|
||||
- ./jan-inference/llm/models:/models
|
||||
|
||||
networks:
|
||||
jan_community:
|
||||
ipv4_address: 172.20.0.17
|
||||
|
||||
# Service to run the Llama web application.
|
||||
llm:
|
||||
image: ghcr.io/abetlen/llama-cpp-python:latest
|
||||
image: ghcr.io/abetlen/llama-cpp-python@sha256:b6d21ff8c4d9baad65e1fa741a0f8c898d68735fff3f3cd777e3f0c6a1839dd4
|
||||
# Mount the directory that contains the downloaded model.
|
||||
volumes:
|
||||
- ./jan-inference/llm/models:/models
|
||||
@ -192,20 +161,74 @@ services:
|
||||
- 8000:8000
|
||||
environment:
|
||||
# Specify the path to the model for the web application.
|
||||
MODEL: /models/llama-2-7b-chat.ggmlv3.q4_1.bin
|
||||
MODEL: /models/${LLM_MODEL_FILE}
|
||||
PYTHONUNBUFFERED: 1
|
||||
# Restart policy configuration
|
||||
restart: on-failure
|
||||
# Specifies that this service should start only after wait-for-downloader has completed successfully.
|
||||
depends_on:
|
||||
wait-for-downloader:
|
||||
condition: service_completed_successfully
|
||||
# Connect this service to two networks: inference_net and traefik_public.
|
||||
|
||||
networks:
|
||||
jan_community:
|
||||
ipv4_address: 172.20.0.18
|
||||
|
||||
sd-downloader:
|
||||
build:
|
||||
context: ./jan-inference/sd/
|
||||
dockerfile: compile.Dockerfile
|
||||
# The command extracts the model filename from MODEL_URL and downloads it if it doesn't exist.
|
||||
command: /bin/sh -c "if [ ! -f /models/*.bin ]; then python /sd.cpp/sd_cpp/models/convert.py --out_type q4_0 --out_file /models/${SD_MODEL_FILE}.q4_0.bin /models/${SD_MODEL_FILE}; fi"
|
||||
# Mount a local directory to store the downloaded model.
|
||||
volumes:
|
||||
- ./jan-inference/sd/models:/models
|
||||
networks:
|
||||
jan_community:
|
||||
ipv4_address: 172.20.0.19
|
||||
|
||||
# Service to run the SD web application.
|
||||
sd:
|
||||
build:
|
||||
context: ./jan-inference/sd/
|
||||
dockerfile: inference.Dockerfile
|
||||
# Mount the directory that contains the downloaded model.
|
||||
volumes:
|
||||
- ./jan-inference/sd/models:/models
|
||||
- ./jan-inference/sd/output/:/serving/output
|
||||
command: /bin/bash -c "python -m uvicorn main:app --proxy-headers --host 0.0.0.0 --port 8000"
|
||||
environment:
|
||||
# Specify the path to the model for the web application.
|
||||
BASE_URL: http://0.0.0.0:8000
|
||||
MODEL_NAME: ${SD_MODEL_FILE}.q4_0.bin
|
||||
MODEL_DIR: "/models"
|
||||
SD_PATH: "/sd"
|
||||
PYTHONUNBUFFERED: 1
|
||||
ports:
|
||||
- 8001:8000
|
||||
# Restart policy configuration
|
||||
restart: on-failure
|
||||
# Specifies that this service should start only after wait-for-downloader has completed successfully.
|
||||
depends_on:
|
||||
sd-downloader:
|
||||
condition: service_completed_successfully
|
||||
networks:
|
||||
jan_community:
|
||||
ipv4_address: 172.20.0.21
|
||||
|
||||
# Service for Traefik, a modern HTTP reverse proxy and load balancer.
|
||||
# traefik:
|
||||
# image: traefik:v2.10
|
||||
# ports:
|
||||
# # Map port 80 in the container to port 80 on the host.
|
||||
# - "80:80"
|
||||
# # Map port 8080 in the container (Traefik's dashboard) to port 8080 on the host.
|
||||
# - "8080:8080"
|
||||
# # Mount the Docker socket to allow Traefik to listen to Docker's API.
|
||||
# volumes:
|
||||
# - /var/run/docker.sock:/var/run/docker.sock:ro
|
||||
# - ./traefik/traefik.yml:/traefik.yml:ro
|
||||
# - ./traefik/config.yml:/config.yml:ro
|
||||
# networks:
|
||||
# jan_community:
|
||||
# ipv4_address: 172.20.0.22
|
||||
|
||||
networks:
|
||||
jan_community:
|
||||
driver: bridge
|
||||
|
||||
@ -1,25 +0,0 @@
|
||||
version: '3'
|
||||
|
||||
services:
|
||||
# Service for Traefik, a modern HTTP reverse proxy and load balancer.
|
||||
traefik:
|
||||
image: traefik:v2.10
|
||||
ports:
|
||||
# Map port 80 in the container to port 80 on the host.
|
||||
- "80:80"
|
||||
# Map port 8080 in the container (Traefik's dashboard) to port 8080 on the host.
|
||||
- "8080:8080"
|
||||
# Mount the Docker socket to allow Traefik to listen to Docker's API.
|
||||
volumes:
|
||||
- /var/run/docker.sock:/var/run/docker.sock:ro
|
||||
- ./traefik/traefik.yml:/traefik.yml:ro
|
||||
- ./traefik/config.yml:/config.yml:ro
|
||||
# Connect this service to the traefik_public network.
|
||||
networks:
|
||||
- traefik_public
|
||||
|
||||
# Define networks used in this docker-compose file.
|
||||
networks:
|
||||
# Public-facing network that Traefik uses. Marked as external to indicate it may be defined outside this file.
|
||||
traefik_public:
|
||||
external: true
|
||||
@ -1,8 +0,0 @@
|
||||
# Inference - LLM
|
||||
|
||||
```bash
|
||||
docker network create traefik_public
|
||||
cp .env.example .env
|
||||
# -> Update MODEL_URL in `.env` file
|
||||
docker compose up -d --scale llm=2
|
||||
``````
|
||||
@ -1,60 +0,0 @@
|
||||
version: '3'
|
||||
|
||||
services:
|
||||
|
||||
# Service to download a model file.
|
||||
downloader:
|
||||
image: busybox
|
||||
# The command extracts the model filename from MODEL_URL and downloads it if it doesn't exist.
|
||||
command: /bin/sh -c "LLM_MODEL_FILE=$(basename ${MODEL_URL}); if [ ! -f /models/$LLM_MODEL_FILE ]; then wget -O /models/$LLM_MODEL_FILE ${MODEL_URL}; fi"
|
||||
# Mount a local directory to store the downloaded model.
|
||||
volumes:
|
||||
- ./models:/models
|
||||
|
||||
# Service to wait for the downloader service to finish downloading the model.
|
||||
wait-for-downloader:
|
||||
image: busybox
|
||||
# The command waits until the model file (specified in MODEL_URL) exists.
|
||||
command: /bin/sh -c "LLM_MODEL_FILE=$(basename ${MODEL_URL}); echo 'Waiting for downloader to finish'; while [ ! -f /models/$LLM_MODEL_FILE ]; do sleep 1; done; echo 'Model downloaded!'"
|
||||
# Specifies that this service should start after the downloader service has started.
|
||||
depends_on:
|
||||
downloader:
|
||||
condition: service_started
|
||||
# Mount the same local directory to check for the downloaded model.
|
||||
volumes:
|
||||
- ./models:/models
|
||||
|
||||
# Service to run the Llama web application.
|
||||
llm:
|
||||
image: ghcr.io/abetlen/llama-cpp-python:latest
|
||||
# Mount the directory that contains the downloaded model.
|
||||
volumes:
|
||||
- ./models:/models
|
||||
ports:
|
||||
- 8000:8000
|
||||
environment:
|
||||
# Specify the path to the model for the web application.
|
||||
MODEL: /models/llama-2-7b-chat.ggmlv3.q4_1.bin
|
||||
PYTHONUNBUFFERED: 1
|
||||
# Health check configuration
|
||||
# healthcheck:
|
||||
# test: ["CMD", "wget", "--quiet", "--tries=1", "--spider", "http://localhost:8000"]
|
||||
# interval: 30s
|
||||
# timeout: 10s
|
||||
# retries: 3
|
||||
# start_period: 30s
|
||||
# Restart policy configuration
|
||||
restart: on-failure
|
||||
# Specifies that this service should start only after wait-for-downloader has completed successfully.
|
||||
depends_on:
|
||||
wait-for-downloader:
|
||||
condition: service_completed_successfully
|
||||
# Connect this service to two networks: inference_net and traefik_public.
|
||||
networks:
|
||||
- traefik_public
|
||||
|
||||
# Define networks used in this docker-compose file.
|
||||
networks:
|
||||
# Public-facing network that Traefik uses. Marked as external to indicate it may be defined outside this file.
|
||||
traefik_public:
|
||||
external: true
|
||||
@ -1,71 +0,0 @@
|
||||
version: '3'
|
||||
|
||||
services:
|
||||
|
||||
# Service to download a model file.
|
||||
downloader:
|
||||
build:
|
||||
context: ./
|
||||
dockerfile: compile.Dockerfile
|
||||
# platform: "linux/amd64"
|
||||
# The command extracts the model filename from MODEL_URL and downloads it if it doesn't exist.
|
||||
command: /bin/sh -c "SD_MODEL_FILE=$(basename ${MODEL_URL}); if [ ! -f /converted_models/*.bin ]; then wget -O /converted_models/$SD_MODEL_FILE ${MODEL_URL}; python /sd.cpp/models/convert.py --out_type q4_0 --out_file /converted_models/$SD_MODEL_FILE; fi"
|
||||
# Mount a local directory to store the downloaded model.
|
||||
volumes:
|
||||
- ./models:/converted_models
|
||||
|
||||
# Service to wait for the downloader service to finish downloading the model.
|
||||
wait-for-downloader:
|
||||
image: busybox
|
||||
# The command waits until the model file (specified in MODEL_URL) exists.
|
||||
command: /bin/sh -c "SD_MODEL_FILE=$(basename ${MODEL_URL}); echo 'Waiting for downloader to finish'; while [ ! -f /models/*.bin ]; do sleep 1; done; echo 'Model downloaded and converted!'"
|
||||
# Specifies that this service should start after the downloader service has started.
|
||||
depends_on:
|
||||
downloader:
|
||||
condition: service_started
|
||||
# Mount the same local directory to check for the downloaded model.
|
||||
volumes:
|
||||
- ./models:/models
|
||||
|
||||
# Service to run the SD web application.
|
||||
sd:
|
||||
build:
|
||||
context: ./
|
||||
dockerfile: inference.Dockerfile
|
||||
# Mount the directory that contains the downloaded model.
|
||||
volumes:
|
||||
- ./models:/models
|
||||
- ./output/:/serving/output
|
||||
command: /bin/bash -c "python -m uvicorn main:app --proxy-headers --host 0.0.0.0 --port 8000"
|
||||
# platform: "linux/amd64"
|
||||
environment:
|
||||
# Specify the path to the model for the web application.
|
||||
BASE_URL: http://0.0.0.0:8000
|
||||
MODEL_NAME: "v1-5-pruned-emaonly-ggml-model-q5_0.bin"
|
||||
MODEL_DIR: "/models"
|
||||
SD_PATH: "/sd"
|
||||
PYTHONUNBUFFERED: 1
|
||||
ports:
|
||||
- 8000:8000
|
||||
# Health check configuration
|
||||
# healthcheck:
|
||||
# test: ["CMD", "wget", "--quiet", "--tries=1", "--spider", "http://localhost:8000"]
|
||||
# interval: 30s
|
||||
# timeout: 10s
|
||||
# retries: 3
|
||||
# start_period: 30s
|
||||
# Restart policy configuration
|
||||
restart: on-failure
|
||||
# Specifies that this service should start only after wait-for-downloader has completed successfully.
|
||||
depends_on:
|
||||
wait-for-downloader:
|
||||
condition: service_completed_successfully
|
||||
# Connect this service to two networks: inference_net and traefik_public.
|
||||
networks:
|
||||
- traefik_public
|
||||
|
||||
# Define networks used in this docker-compose file.
|
||||
networks:
|
||||
# Public-facing network that Traefik uses. Marked as external to indicate it may be defined outside this file.
|
||||
traefik_public:
|
||||
external: true
|
||||
@ -4,16 +4,26 @@ from fastapi.staticfiles import StaticFiles
|
||||
import subprocess
|
||||
import os
|
||||
from uuid import uuid4
|
||||
from pydantic import BaseModel
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
OUTPUT_DIR = "output"
|
||||
SD_PATH = os.environ.get("SD_PATH", "./sd")
|
||||
MODEL_DIR = os.environ.get("MODEL_DIR", "./models")
|
||||
BASE_URL = os.environ.get("BASE_URL", "http://localhost:8000")
|
||||
MODEL_NAME = os.environ.get(
|
||||
"MODEL_NAME", "v1-5-pruned-emaonly-ggml-model-q5_0.bin")
|
||||
|
||||
|
||||
class Payload(BaseModel):
|
||||
prompt: str
|
||||
neg_prompt: str
|
||||
seed: int
|
||||
steps: int
|
||||
width: int
|
||||
height: int
|
||||
|
||||
|
||||
# Create the OUTPUT_DIR directory if it does not exist
|
||||
if not os.path.exists(OUTPUT_DIR):
|
||||
os.makedirs(OUTPUT_DIR)
|
||||
@ -26,33 +36,37 @@ if not os.path.exists(MODEL_DIR):
|
||||
app.mount("/output", StaticFiles(directory=OUTPUT_DIR), name="output")
|
||||
|
||||
|
||||
def run_command(prompt: str, filename: str):
|
||||
def run_command(payload: Payload, filename: str):
|
||||
# Construct the command based on your provided example
|
||||
command = [SD_PATH,
|
||||
"-m", os.path.join(MODEL_DIR, MODEL_NAME),
|
||||
"-p", prompt,
|
||||
"-o", os.path.join(OUTPUT_DIR, filename)
|
||||
"--model", f'{os.path.join(MODEL_DIR, MODEL_NAME)}',
|
||||
"--prompt", f'"{payload.prompt}"',
|
||||
"--negative-prompt", f'"{payload.neg_prompt}"',
|
||||
"--height", str(payload.height),
|
||||
"--width", str(payload.width),
|
||||
"--steps", str(payload.steps),
|
||||
"--seed", str(payload.seed),
|
||||
"--mode", 'txt2img',
|
||||
"-o", f'{os.path.join(OUTPUT_DIR, filename)}',
|
||||
]
|
||||
|
||||
try:
|
||||
sub_output = subprocess.run(command, timeout=5*60, capture_output=True,
|
||||
check=True, encoding="utf-8")
|
||||
print(sub_output.stdout)
|
||||
subprocess.run(command, timeout=5*60)
|
||||
except subprocess.CalledProcessError:
|
||||
raise HTTPException(
|
||||
status_code=500, detail="Failed to execute the command.")
|
||||
|
||||
|
||||
@app.post("/inference/")
|
||||
async def run_inference(background_tasks: BackgroundTasks, prompt: str = Form()):
|
||||
@app.post("/inferences/txt2img")
|
||||
async def run_inference(background_tasks: BackgroundTasks, payload: Payload):
|
||||
# Generate a unique filename using uuid4()
|
||||
filename = f"{uuid4()}.png"
|
||||
|
||||
# We will use background task to run the command so it won't block
|
||||
background_tasks.add_task(run_command, prompt, filename)
|
||||
background_tasks.add_task(run_command, payload, filename)
|
||||
|
||||
# Return the expected path of the output file
|
||||
return {"url": f'{BASE_URL}/serve/{filename}'}
|
||||
return {"url": f'/serve/{filename}'}
|
||||
|
||||
|
||||
@app.get("/serve/{filename}")
|
||||
|
||||
@ -9,9 +9,9 @@ KEYCLOAK_ADMIN_PASSWORD=admin
|
||||
|
||||
# Inference
|
||||
## LLM
|
||||
MODEL_URL=https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/resolve/main/llama-2-7b-chat.ggmlv3.q4_1.bin
|
||||
LLM_MODEL_FILE=$(basename $MODEL_URL)
|
||||
LLM_MODEL_URL=https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/resolve/main/llama-2-7b-chat.ggmlv3.q4_1.bin
|
||||
LLM_MODEL_FILE=llama-2-7b-chat.ggmlv3.q4_1.bin
|
||||
|
||||
## SD
|
||||
MODEL_URL=https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors
|
||||
SD_MODEL_FILE=$(basename $MODEL_URL)
|
||||
SD_MODEL_URL=https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors
|
||||
SD_MODEL_FILE=v1-5-pruned-emaonly.safetensors
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user