fix: Add latest result on 3090/ 4090
This commit is contained in:
parent
70e10fcc4a
commit
c885d59c0b
@ -11,15 +11,15 @@ Jan now supports [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM) as an al
|
|||||||
|
|
||||||
We've made a few TensorRT-LLM models TensorRT-LLM models available in the Jan Hub for download:
|
We've made a few TensorRT-LLM models TensorRT-LLM models available in the Jan Hub for download:
|
||||||
|
|
||||||
- TinyLlama-1.1b
|
- TinyLlama-1.1b
|
||||||
- Mistral 7b
|
- Mistral 7b
|
||||||
- TinyJensen-1.1b 😂
|
- TinyJensen-1.1b 😂
|
||||||
|
|
||||||
You can get started by following our [TensorRT-LLM Guide](/guides/providers/tensorrt-llm).
|
You can get started by following our [TensorRT-LLM Guide](/guides/providers/tensorrt-llm).
|
||||||
|
|
||||||
## Performance Benchmarks
|
## Performance Benchmarks
|
||||||
|
|
||||||
TensorRT-LLM is mainly used in datacenter-grade GPUs to achieve [10,000 tokens/s](https://nvidia.github.io/TensorRT-LLM/blogs/H100vsA100.html) type speeds. Naturally, we were curious to see how this would perform on consumer-grade GPUs.
|
TensorRT-LLM is mainly used in datacenter-grade GPUs to achieve [10,000 tokens/s](https://nvidia.github.io/TensorRT-LLM/blogs/H100vsA100.html) type speeds. Naturally, we were curious to see how this would perform on consumer-grade GPUs.
|
||||||
|
|
||||||
We’ve done a comparison of how TensorRT-LLM does vs. [llama.cpp](https://github.com/ggerganov/llama.cpp), our default inference engine.
|
We’ve done a comparison of how TensorRT-LLM does vs. [llama.cpp](https://github.com/ggerganov/llama.cpp), our default inference engine.
|
||||||
|
|
||||||
@ -29,7 +29,7 @@ We’ve done a comparison of how TensorRT-LLM does vs. [llama.cpp](https://githu
|
|||||||
| RTX 3090 | Ampere | 24 | 10,496 | 328 | 384 | 935.8 |
|
| RTX 3090 | Ampere | 24 | 10,496 | 328 | 384 | 935.8 |
|
||||||
| RTX 4060 | Ada | 8 | 3,072 | 96 | 128 | 272 |
|
| RTX 4060 | Ada | 8 | 3,072 | 96 | 128 | 272 |
|
||||||
|
|
||||||
- We tested using batch_size 1 and input length 2048, output length 512 as it’s the common use case people all use.
|
- We tested using batch_size 1 and input length 2048, output length 512 as it’s the common use case people all use.
|
||||||
- We ran the tests 5 times to get get the Average.
|
- We ran the tests 5 times to get get the Average.
|
||||||
- CPU, Memory were obtained from... Windows Task Manager
|
- CPU, Memory were obtained from... Windows Task Manager
|
||||||
- GPU Metrics were obtained from `nvidia-smi` or `htop`/`nvtop`
|
- GPU Metrics were obtained from `nvidia-smi` or `htop`/`nvtop`
|
||||||
@ -38,30 +38,30 @@ We’ve done a comparison of how TensorRT-LLM does vs. [llama.cpp](https://githu
|
|||||||
|
|
||||||
### RTX 4090 on Windows PC
|
### RTX 4090 on Windows PC
|
||||||
|
|
||||||
TensorRT-LLM handily outperformed llama.cpp in for the 4090s. Interestingly,
|
TensorRT-LLM handily outperformed llama.cpp in for the 4090s. Interestingly,
|
||||||
|
|
||||||
- CPU: Intel 13th series
|
- CPU: Intel 13th series
|
||||||
- GPU: NVIDIA GPU 4090 (Ampere - sm 86)
|
- GPU: NVIDIA GPU 4090 (Ampere - sm 86)
|
||||||
- RAM: 120GB
|
- RAM: 32GB
|
||||||
- OS: Windows
|
- OS: Windows 11 Pro
|
||||||
|
|
||||||
#### TinyLlama-1.1b q4
|
#### TinyLlama-1.1b FP16
|
||||||
|
|
||||||
| Metrics | GGUF (using the GPU) | TensorRT-LLM |
|
| Metrics | GGUF (using the GPU) | TensorRT-LLM |
|
||||||
| -------------------- | -------------------- | ------------ |
|
| -------------------- | -------------------- | ------------ |
|
||||||
| Throughput (token/s) | 104 | ✅ 131 |
|
| Throughput (token/s) | No support | ✅ 257.76 |
|
||||||
| VRAM Used (GB) | 2.1 | 😱 21.5 |
|
| VRAM Used (GB) | No support | 3.3 |
|
||||||
| RAM Used (GB) | 0.3 | 😱 15 |
|
| RAM Used (GB) | No support | 0.54 |
|
||||||
| Disk Size (GB) | 4.07 | 4.07 |
|
| Disk Size (GB) | No support | 2 |
|
||||||
|
|
||||||
#### Mistral-7b int4
|
#### Mistral-7b int4
|
||||||
|
|
||||||
| Metrics | GGUF (using the GPU) | TensorRT-LLM |
|
| Metrics | GGUF (using the GPU) | TensorRT-LLM |
|
||||||
| -------------------- | -------------------- | ------------ |
|
| -------------------- | -------------------- | ------------ |
|
||||||
| Throughput (token/s) | 80 | ✅ 97.9 |
|
| Throughput (token/s) | 101.3 | ✅ 159 |
|
||||||
| VRAM Used (GB) | 2.1 | 😱 23.5 |
|
| VRAM Used (GB) | 5.5 | 6.3 |
|
||||||
| RAM Used (GB) | 0.3 | 😱 15 |
|
| RAM Used (GB) | 0.54 | 0.42 |
|
||||||
| Disk Size (GB) | 4.07 | 4.07 |
|
| Disk Size (GB) | 4.07 | 3.66 |
|
||||||
|
|
||||||
### RTX 3090 on Windows PC
|
### RTX 3090 on Windows PC
|
||||||
|
|
||||||
@ -70,23 +70,23 @@ TensorRT-LLM handily outperformed llama.cpp in for the 4090s. Interestingly,
|
|||||||
- RAM: 64GB
|
- RAM: 64GB
|
||||||
- OS: Windows
|
- OS: Windows
|
||||||
|
|
||||||
#### TinyLlama-1.1b q4
|
#### TinyLlama-1.1b FP16
|
||||||
|
|
||||||
| Metrics | GGUF (using the GPU) | TensorRT-LLM |
|
| Metrics | GGUF (using the GPU) | TensorRT-LLM |
|
||||||
| -------------------- | -------------------- | ------------ |
|
| -------------------- | -------------------- | ------------ |
|
||||||
| Throughput (token/s) | 131.28 | ✅ 194 |
|
| Throughput (token/s) | No support | ✅ 203 |
|
||||||
| VRAM Used (GB) | 2.1 | 😱 21.5 |
|
| VRAM Used (GB) | No support | 3.8 |
|
||||||
| RAM Used (GB) | 0.3 | 😱 15 |
|
| RAM Used (GB) | No support | 0.54 |
|
||||||
| Disk Size (GB) | 4.07 | 4.07 |
|
| Disk Size (GB) | No support | 2 |
|
||||||
|
|
||||||
#### Mistral-7b int4
|
#### Mistral-7b int4
|
||||||
|
|
||||||
| Metrics | GGUF (using the GPU) | TensorRT-LLM |
|
| Metrics | GGUF (using the GPU) | TensorRT-LLM |
|
||||||
| -------------------- | -------------------- | ------------ |
|
| -------------------- | -------------------- | ------------ |
|
||||||
| Throughput (token/s) | 88 | ✅ 137 |
|
| Throughput (token/s) | 90 | 140.27 |
|
||||||
| VRAM Used (GB) | 6.0 | 😱 23.8 |
|
| VRAM Used (GB) | 6.0 | 6.8 |
|
||||||
| RAM Used (GB) | 0.3 | 😱 25 |
|
| RAM Used (GB) | 0.54 | 0.42 |
|
||||||
| Disk Size (GB) | 4.07 | 4.07 |
|
| Disk Size (GB) | 4.07 | 3.66 |
|
||||||
|
|
||||||
### RTX 4060 on Windows Laptop
|
### RTX 4060 on Windows Laptop
|
||||||
|
|
||||||
@ -95,7 +95,7 @@ TensorRT-LLM handily outperformed llama.cpp in for the 4090s. Interestingly,
|
|||||||
- RAM: 16GB
|
- RAM: 16GB
|
||||||
- GPU: NVIDIA Laptop GPU 4060 (Ada)
|
- GPU: NVIDIA Laptop GPU 4060 (Ada)
|
||||||
|
|
||||||
#### TinyLlama-1.1b q4
|
#### TinyLlama-1.1b FP16
|
||||||
|
|
||||||
| Metrics | GGUF (using the GPU) | TensorRT-LLM |
|
| Metrics | GGUF (using the GPU) | TensorRT-LLM |
|
||||||
| -------------------- | -------------------- | ------------ |
|
| -------------------- | -------------------- | ------------ |
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user