* feat: Smart model management
* **New UI option** – `memory_util` added to `settings.json` with a dropdown (high / medium / low) to let users control how aggressively the engine uses system memory.
* **Configuration updates** – `LlamacppConfig` now includes `memory_util`; the extension class stores it in a new `memoryMode` property and handles updates through `updateConfig`.
* **System memory handling**
* Introduced `SystemMemory` interface and `getTotalSystemMemory()` to report combined VRAM + RAM.
* Added helper methods `getKVCachePerToken`, `getLayerSize`, and a new `ModelPlan` type.
* **Smart model‑load planner** – `planModelLoad()` computes:
* Number of GPU layers that can fit in usable VRAM.
* Maximum context length based on KV‑cache size and the selected memory utilization mode (high/medium/low).
* Whether KV‑cache must be off‑loaded to CPU and the overall loading mode (GPU, Hybrid, CPU, Unsupported).
* Detailed logging of the planning decision.
* **Improved support check** – `isModelSupported()` now:
* Uses the combined VRAM/RAM totals from `getTotalSystemMemory()`.
* Applies an 80% usable‑memory heuristic.
* Returns **GREEN** only when both weights and KV‑cache fit in VRAM, **YELLOW** when they fit only in total memory or require CPU off‑load, and **RED** when the model cannot fit at all.
* **Cleanup** – Removed unused `GgufMetadata` import; updated imports and type definitions accordingly.
* **Documentation/comments** – Added explanatory JSDoc comments for the new methods and clarified the return semantics of `isModelSupported`.
* chore: migrate no_kv_offload from llamacpp setting to model setting
* chore: add UI auto optimize model setting
* feat: improve model loading planner with mmproj support and smarter memory budgeting
* Extend `ModelPlan` with optional `noOffloadMmproj` flag to indicate when a multimodal projector can stay in VRAM.
* Add `mmprojPath` parameter to `planModelLoad` and calculate its size, attempting to keep it on GPU when possible.
* Refactor system memory detection:
* Use `used_memory` (actual free RAM) instead of total RAM for budgeting.
* Introduced `usableRAM` placeholder for future use.
* Rewrite KV‑cache size calculation:
* Properly handle GQA models via `attention.head_count_kv`.
* Compute bytes per token as `nHeadKV * headDim * 2 * 2 * nLayer`.
* Replace the old 70 % VRAM heuristic with a more flexible budget:
* Reserve a fixed VRAM amount and apply an overhead factor.
* Derive usable system RAM from total memory minus VRAM.
* Implement a robust allocation algorithm:
* Prioritize placing the mmproj in VRAM.
* Search for the best balance of GPU layers and context length.
* Fallback strategies for hybrid and pure‑CPU modes with detailed safety checks.
* Add extensive validation of model size, KV‑cache size, layer size, and memory mode.
* Improve logging throughout the planning process for easier debugging.
* Adjust final plan return shape to include the new `noOffloadMmproj` field.
* remove unused variable
---------
Co-authored-by: Faisal Amir <urmauur@gmail.com>
* feat: Introduce structured error handling for llamacpp extension
This commit introduces a structured error handling system for the `llamacpp` extension. Instead of returning simple string errors, we now use a custom `LlamacppError` struct with a specific `ErrorCode` enum. This allows the frontend to display more user-friendly and actionable error messages based on the code, rather than raw debug logs.
The changes include:
- A new `ErrorCode` enum to categorize errors (e.g., `OutOfMemory`, `ModelArchNotSupported`, `BinaryNotFound`).
- A `LlamacppError` struct to encapsulate the code, a user-facing message, and optional detailed logs.
- A static method `from_stderr` that intelligently parses llama.cpp's standard error output to identify and map common issues like Out of Memory errors to a specific error code.
- Refactored `ServerError` enum to wrap the new `LlamacppError` and provide a consistent serialization format for the Tauri frontend.
- Updated all relevant functions (`load_llama_model`, `get_devices`) to return the new structured error type, ensuring a more robust and predictable error flow.
- A reduced timeout for model loading from 300 to 180 seconds.
This work lays the groundwork for a more intuitive and helpful user experience, as the application can now provide clear guidance to users when a model fails to load.
* Update src-tauri/src/core/utils/extensions/inference_llamacpp_extension/server.rs
Co-authored-by: ellipsis-dev[bot] <65095814+ellipsis-dev[bot]@users.noreply.github.com>
* Update src-tauri/src/core/utils/extensions/inference_llamacpp_extension/server.rs
Co-authored-by: ellipsis-dev[bot] <65095814+ellipsis-dev[bot]@users.noreply.github.com>
* chore: update FE handle error object from extension
* chore: fix property type
---------
Co-authored-by: ellipsis-dev[bot] <65095814+ellipsis-dev[bot]@users.noreply.github.com>
Co-authored-by: Faisal Amir <urmauur@gmail.com>
* feat: Add support for overriding tensor buffer type
This commit introduces a new configuration option, `override_tensor_buffer_t`, which allows users to specify a regex for matching tensor names to override their buffer type. This is an advanced setting primarily useful for optimizing the performance of large models, particularly Mixture of Experts (MoE) models.
By overriding the tensor buffer type, users can keep critical parts of the model, like the attention layers, on the GPU while offloading other parts, such as the expert feed-forward networks, to the CPU. This can lead to significant speed improvements for massive models.
Additionally, this change refines the error message to be more specific when a model fails to load. The previous message "Failed to load llama-server" has been updated to "Failed to load model" to be more accurate.
* chore: update FE to suppoer override-tensor
---------
Co-authored-by: Faisal Amir <urmauur@gmail.com>