347 lines
11 KiB
TypeScript

const fs = require("fs");
const kill = require("kill-port");
const path = require("path");
const { spawn } = require("child_process");
const tcpPortUsed = require("tcp-port-used");
const fetchRetry = require("fetch-retry")(global.fetch);
const si = require("systeminformation");
const log = require("electron-log");
// The PORT to use for the Nitro subprocess
const PORT = 3928;
const LOCAL_HOST = "127.0.0.1";
const NITRO_HTTP_SERVER_URL = `http://${LOCAL_HOST}:${PORT}`;
const NITRO_HTTP_LOAD_MODEL_URL = `${NITRO_HTTP_SERVER_URL}/inferences/llamacpp/loadmodel`;
const NITRO_HTTP_UNLOAD_MODEL_URL = `${NITRO_HTTP_SERVER_URL}/inferences/llamacpp/unloadModel`;
const NITRO_HTTP_VALIDATE_MODEL_URL = `${NITRO_HTTP_SERVER_URL}/inferences/llamacpp/modelstatus`;
const NITRO_HTTP_KILL_URL = `${NITRO_HTTP_SERVER_URL}/processmanager/destroy`;
// The subprocess instance for Nitro
let subprocess = null;
let currentModelFile = null;
/**
* Stops a Nitro subprocess.
* @param wrapper - The model wrapper.
* @returns A Promise that resolves when the subprocess is terminated successfully, or rejects with an error message if the subprocess fails to terminate.
*/
function stopModel(): Promise<ModelOperationResponse> {
return new Promise((resolve, reject) => {
checkAndUnloadNitro();
resolve({ error: undefined });
});
}
/**
* Initializes a Nitro subprocess to load a machine learning model.
* @param wrapper - The model wrapper.
* @returns A Promise that resolves when the model is loaded successfully, or rejects with an error message if the model is not found or fails to load.
* TODO: Should pass absolute of the model file instead of just the name - So we can modurize the module.ts to npm package
* TODO: Should it be startModel instead?
*/
async function initModel(wrapper: any): Promise<ModelOperationResponse> {
currentModelFile = wrapper.modelFullPath;
if (wrapper.model.engine !== "nitro") {
return Promise.resolve({ error: "Not a nitro model" });
} else {
// Gather system information for CPU physical cores and memory
const nitroResourceProbe = await getResourcesInfo();
// Convert settings.prompt_template to system_prompt, user_prompt, ai_prompt
if (wrapper.model.settings.prompt_template) {
const promptTemplate = wrapper.model.settings.prompt_template;
const prompt = promptTemplateConverter(promptTemplate);
if (prompt.error) {
return Promise.resolve({ error: prompt.error });
}
wrapper.model.settings.system_prompt = prompt.system_prompt;
wrapper.model.settings.user_prompt = prompt.user_prompt;
wrapper.model.settings.ai_prompt = prompt.ai_prompt;
}
const settings = {
llama_model_path: currentModelFile,
...wrapper.model.settings,
// This is critical and requires real system information
cpu_threads: nitroResourceProbe.numCpuPhysicalCore,
};
log.info(`Load model settings: ${JSON.stringify(settings, null, 2)}`);
return (
// 1. Check if the port is used, if used, attempt to unload model / kill nitro process
validateModelVersion()
.then(checkAndUnloadNitro)
// 2. Spawn the Nitro subprocess
.then(await spawnNitroProcess(nitroResourceProbe))
// 4. Load the model into the Nitro subprocess (HTTP POST request)
.then(() => loadLLMModel(settings))
// 5. Check if the model is loaded successfully
.then(validateModelStatus)
.catch((err) => {
log.error("error: " + JSON.stringify(err));
return { error: err, currentModelFile };
})
);
}
}
function promptTemplateConverter(promptTemplate) {
// Split the string using the markers
const systemMarker = "{system_message}";
const promptMarker = "{prompt}";
if (
promptTemplate.includes(systemMarker) &&
promptTemplate.includes(promptMarker)
) {
// Find the indices of the markers
const systemIndex = promptTemplate.indexOf(systemMarker);
const promptIndex = promptTemplate.indexOf(promptMarker);
// Extract the parts of the string
const system_prompt = promptTemplate.substring(0, systemIndex);
const user_prompt = promptTemplate.substring(
systemIndex + systemMarker.length,
promptIndex
);
const ai_prompt = promptTemplate.substring(
promptIndex + promptMarker.length
);
// Return the split parts
return { system_prompt, user_prompt, ai_prompt };
} else if (promptTemplate.includes(promptMarker)) {
// Extract the parts of the string for the case where only promptMarker is present
const promptIndex = promptTemplate.indexOf(promptMarker);
const user_prompt = promptTemplate.substring(0, promptIndex);
const ai_prompt = promptTemplate.substring(
promptIndex + promptMarker.length
);
const system_prompt = "";
// Return the split parts
return { system_prompt, user_prompt, ai_prompt };
}
// Return an error if none of the conditions are met
return { error: "Cannot split prompt template" };
}
/**
* Loads a LLM model into the Nitro subprocess by sending a HTTP POST request.
* @returns A Promise that resolves when the model is loaded successfully, or rejects with an error message if the model is not found or fails to load.
*/
function loadLLMModel(settings): Promise<Response> {
return fetchRetry(NITRO_HTTP_LOAD_MODEL_URL, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify(settings),
retries: 3,
retryDelay: 500,
}).catch((err) => {
console.error(err);
log.error("error: " + JSON.stringify(err));
// Fetch error, Nitro server might not started properly
throw new Error("Model loading failed.");
});
}
/**
* Validates the status of a model.
* @returns {Promise<ModelOperationResponse>} A promise that resolves to an object.
* If the model is loaded successfully, the object is empty.
* If the model is not loaded successfully, the object contains an error message.
*/
async function validateModelStatus(): Promise<ModelOperationResponse> {
// Send a GET request to the validation URL.
// Retry the request up to 3 times if it fails, with a delay of 500 milliseconds between retries.
return fetchRetry(NITRO_HTTP_VALIDATE_MODEL_URL, {
method: "GET",
headers: {
"Content-Type": "application/json",
},
retries: 5,
retryDelay: 500,
})
.then(async (res: Response) => {
// If the response is OK, check model_loaded status.
if (res.ok) {
const body = await res.json();
// If the model is loaded, return an empty object.
// Otherwise, return an object with an error message.
if (body.model_loaded) {
return { error: undefined };
}
}
return { error: "Model loading failed" };
})
.catch((err) => {
log.error("Model loading failed" + err.toString());
return { error: `Model loading failed.` };
});
}
/**
* Terminates the Nitro subprocess.
* @returns A Promise that resolves when the subprocess is terminated successfully, or rejects with an error message if the subprocess fails to terminate.
*/
function killSubprocess(): Promise<void> {
fetch(NITRO_HTTP_KILL_URL, {
method: "DELETE",
}).catch((err) => {
console.error(err);
subprocess?.kill();
kill(PORT, "tcp").then(console.log).catch(console.log);
subprocess = null;
});
return
}
/**
* Check port is used or not, if used, attempt to unload model
* If unload failed, kill the port
*/
async function checkAndUnloadNitro() {
return tcpPortUsed.check(PORT, LOCAL_HOST).then(async (inUse) => {
// If inUse - try unload or kill process, otherwise do nothing
if (inUse) {
// Attempt to unload model
return fetch(NITRO_HTTP_UNLOAD_MODEL_URL, {
method: "GET",
}).catch((err) => {
console.error(err);
// Fallback to kill the port
return killSubprocess();
});
}
});
}
/**
* Look for the Nitro binary and execute it
* Using child-process to spawn the process
* Should run exactly platform specified Nitro binary version
*/
async function spawnNitroProcess(nitroResourceProbe: any): Promise<any> {
return new Promise(async (resolve, reject) => {
let binaryFolder = path.join(__dirname, "bin"); // Current directory by default
let binaryName;
if (process.platform === "win32") {
binaryName = "win-start.bat";
} else if (process.platform === "darwin") {
if (process.arch === "arm64") {
binaryFolder = path.join(binaryFolder, "mac-arm64");
} else {
binaryFolder = path.join(binaryFolder, "mac-x64");
}
binaryName = "nitro";
} else {
binaryName = "linux-start.sh";
}
const binaryPath = path.join(binaryFolder, binaryName);
// Execute the binary
subprocess = spawn(binaryPath, [1, LOCAL_HOST, PORT], {
cwd: binaryFolder,
});
// Handle subprocess output
subprocess.stdout.on("data", (data) => {
console.debug(`stdout: ${data}`);
});
subprocess.stderr.on("data", (data) => {
log.error("subprocess error:" + data.toString());
console.error(`stderr: ${data}`);
});
subprocess.on("close", (code) => {
console.debug(`child process exited with code ${code}`);
subprocess = null;
reject(`Nitro process exited. ${code ?? ""}`);
});
tcpPortUsed.waitUntilUsed(PORT, 300, 30000).then(() => {
resolve(nitroResourceProbe);
});
});
}
/**
* Validate the model version, if it is GGUFv1, reject the promise
* @returns A Promise that resolves when the model is loaded successfully, or rejects with an error message if the model is not found or fails to load.
*/
function validateModelVersion(): Promise<void> {
log.info("validateModelVersion");
// Read the file
return new Promise((resolve, reject) => {
fs.open(currentModelFile, "r", (err, fd) => {
if (err) {
log.error("validateModelVersion error" + JSON.stringify(err));
console.error(err.message);
reject(err);
return;
}
// Buffer to store the byte
const buffer = Buffer.alloc(1);
// Model version will be the 5th byte of the file
fs.read(fd, buffer, 0, 1, 4, (err, bytesRead, buffer) => {
if (err) {
log.error("validateModelVersion open error" + JSON.stringify(err));
console.error(err.message);
fs.close(fd, (err) => {
log.error("validateModelVersion close error" + JSON.stringify(err));
if (err) console.error(err.message);
});
reject(err);
} else {
// Interpret the byte as ASCII
if (buffer[0] === 0x01) {
// This is GGUFv1, which is deprecated
reject("GGUFv1 model is deprecated, please try another model.");
}
}
// Close the file descriptor
fs.close(fd, (err) => {
if (err) console.error(err.message);
});
resolve();
});
});
});
}
function dispose() {
// clean other registered resources here
killSubprocess();
}
/**
* Get the system resources information
*/
async function getResourcesInfo(): Promise<ResourcesInfo> {
return new Promise(async (resolve) => {
const cpu = await si.cpu();
const mem = await si.mem();
const response = {
numCpuPhysicalCore: cpu.physicalCores,
memAvailable: mem.available,
};
resolve(response);
});
}
module.exports = {
initModel,
stopModel,
killSubprocess,
dispose,
};