Akarshan Biswas 7a174e621a
feat: Smart model management (#6390)
* feat: Smart model management

* **New UI option** – `memory_util` added to `settings.json` with a dropdown (high / medium / low) to let users control how aggressively the engine uses system memory.
* **Configuration updates** – `LlamacppConfig` now includes `memory_util`; the extension class stores it in a new `memoryMode` property and handles updates through `updateConfig`.
* **System memory handling**
  * Introduced `SystemMemory` interface and `getTotalSystemMemory()` to report combined VRAM + RAM.
  * Added helper methods `getKVCachePerToken`, `getLayerSize`, and a new `ModelPlan` type.
* **Smart model‑load planner** – `planModelLoad()` computes:
  * Number of GPU layers that can fit in usable VRAM.
  * Maximum context length based on KV‑cache size and the selected memory utilization mode (high/medium/low).
  * Whether KV‑cache must be off‑loaded to CPU and the overall loading mode (GPU, Hybrid, CPU, Unsupported).
  * Detailed logging of the planning decision.
* **Improved support check** – `isModelSupported()` now:
  * Uses the combined VRAM/RAM totals from `getTotalSystemMemory()`.
  * Applies an 80% usable‑memory heuristic.
  * Returns **GREEN** only when both weights and KV‑cache fit in VRAM, **YELLOW** when they fit only in total memory or require CPU off‑load, and **RED** when the model cannot fit at all.
* **Cleanup** – Removed unused `GgufMetadata` import; updated imports and type definitions accordingly.
* **Documentation/comments** – Added explanatory JSDoc comments for the new methods and clarified the return semantics of `isModelSupported`.

* chore: migrate no_kv_offload from llamacpp setting to model setting

* chore: add UI auto optimize model setting

* feat: improve model loading planner with mmproj support and smarter memory budgeting

* Extend `ModelPlan` with optional `noOffloadMmproj` flag to indicate when a multimodal projector can stay in VRAM.
* Add `mmprojPath` parameter to `planModelLoad` and calculate its size, attempting to keep it on GPU when possible.
* Refactor system memory detection:
  * Use `used_memory` (actual free RAM) instead of total RAM for budgeting.
  * Introduced `usableRAM` placeholder for future use.
* Rewrite KV‑cache size calculation:
  * Properly handle GQA models via `attention.head_count_kv`.
  * Compute bytes per token as `nHeadKV * headDim * 2 * 2 * nLayer`.
* Replace the old 70 % VRAM heuristic with a more flexible budget:
  * Reserve a fixed VRAM amount and apply an overhead factor.
  * Derive usable system RAM from total memory minus VRAM.
* Implement a robust allocation algorithm:
  * Prioritize placing the mmproj in VRAM.
  * Search for the best balance of GPU layers and context length.
  * Fallback strategies for hybrid and pure‑CPU modes with detailed safety checks.
* Add extensive validation of model size, KV‑cache size, layer size, and memory mode.
* Improve logging throughout the planning process for easier debugging.
* Adjust final plan return shape to include the new `noOffloadMmproj` field.

* remove unused variable

---------

Co-authored-by: Faisal Amir <urmauur@gmail.com>
2025-09-11 09:48:03 +05:30

368 lines
9.8 KiB
JSON

[
{
"key": "version_backend",
"title": "Version & Backend",
"description": "Version and Backend for llama.cpp",
"controllerType": "dropdown",
"controllerProps": {
"value": "none",
"options": [],
"recommended": ""
}
},
{
"key": "llamacpp_env",
"title": "Environmental variables",
"description": "Environmental variables for llama.cpp(KEY=VALUE), separated by ';'",
"controllerType": "input",
"controllerProps": {
"value": "",
"placeholder": "Eg. GGML_VK_VISIBLE_DEVICES=0,1",
"type": "text",
"textAlign": "right"
}
},
{
"key": "auto_update_engine",
"title": "Auto update engine",
"description": "Automatically update llamacpp engine to latest version",
"controllerType": "checkbox",
"controllerProps": { "value": true }
},
{
"key": "auto_unload",
"title": "Auto-Unload Old Models",
"description": "Automatically unloads models that are not in use to free up memory. Ensure only one model is loaded at a time.",
"controllerType": "checkbox",
"controllerProps": { "value": true }
},
{
"key": "memory_util",
"title": "Smart Memory utilization",
"description": "Smart memory utilization mode for running local GGUF models",
"controllerType": "dropdown",
"controllerProps": {
"value": "high",
"options": [
{ "value": "high", "name": "High" },
{ "value": "medium", "name": "Medium" },
{ "value": "low", "name": "Low" }
],
"recommended": "high"
}
},
{
"key": "threads",
"title": "Threads",
"description": "Number of threads to use during generation (-1 for logical cores).",
"controllerType": "input",
"controllerProps": {
"value": -1,
"placeholder": "-1",
"type": "number",
"textAlign": "right"
}
},
{
"key": "threads_batch",
"title": "Threads (Batch)",
"description": "Number of threads for batch and prompt processing (default: same as Threads).",
"controllerType": "input",
"controllerProps": {
"value": -1,
"placeholder": "-1 (same as Threads)",
"type": "number",
"textAlign": "right"
}
},
{
"key": "ctx_shift",
"title": "Context Shift",
"description": "Allow model to cut text in the beginning to accommodate new text in its memory",
"controllerType": "checkbox",
"controllerProps": {
"value": false
}
},
{
"key": "n_predict",
"title": "Max Tokens to Predict",
"description": "Maximum number of tokens to generate (-1 = infinity).",
"controllerType": "input",
"controllerProps": {
"value": -1,
"placeholder": "-1",
"type": "number",
"textAlign": "right"
}
},
{
"key": "batch_size",
"title": "Batch Size",
"description": "Logical maximum batch size for processing prompts.",
"controllerType": "input",
"controllerProps": {
"value": 2048,
"placeholder": "2048",
"type": "number",
"textAlign": "right"
}
},
{
"key": "ubatch_size",
"title": "uBatch Size",
"description": "Physical maximum batch size for processing prompts.",
"controllerType": "input",
"controllerProps": {
"value": 512,
"placeholder": "512",
"type": "number",
"textAlign": "right"
}
},
{
"key": "device",
"title": "Devices for Offload",
"description": "Comma-separated list of devices to use for offloading (e.g., 'CUDA0', 'CUDA0,CUDA1'). Leave empty to use default/CPU only.",
"controllerType": "input",
"controllerProps": {
"value": "",
"placeholder": "CUDA0",
"type": "text"
}
},
{
"key": "split_mode",
"title": "GPU Split Mode",
"description": "How to split the model across multiple GPUs.",
"controllerType": "dropdown",
"controllerProps": {
"value": "layer",
"options": [
{ "value": "none", "name": "None" },
{ "value": "layer", "name": "Layer" },
{ "value": "row", "name": "Row" }
]
}
},
{
"key": "main_gpu",
"title": "Main GPU Index",
"description": "The GPU to use for the model (split-mode=none) or intermediate results (split-mode=row).",
"controllerType": "input",
"controllerProps": {
"value": 0,
"placeholder": "0",
"type": "number",
"textAlign": "right"
}
},
{
"key": "flash_attn",
"title": "Flash Attention",
"description": "Enable Flash Attention for optimized performance.",
"controllerType": "checkbox",
"controllerProps": {
"value": false
}
},
{
"key": "cont_batching",
"title": "Continuous Batching",
"description": "Enable continuous batching (a.k.a dynamic batching) for concurrent requests.",
"controllerType": "checkbox",
"controllerProps": {
"value": false
}
},
{
"key": "no_mmap",
"title": "Disable mmap",
"description": "Do not memory-map model (slower load but may reduce pageouts if not using mlock).",
"controllerType": "checkbox",
"controllerProps": {
"value": false
}
},
{
"key": "mlock",
"title": "MLock",
"description": "Force system to keep model in RAM, preventing swapping/compression.",
"controllerType": "checkbox",
"controllerProps": {
"value": false
}
},
{
"key": "cache_type_k",
"title": "KV Cache K Type",
"description": "KV cache data type for Keys (default: f16).",
"controllerType": "dropdown",
"controllerProps": {
"value": "f16",
"options": [
{ "value": "f32", "name": "f32" },
{ "value": "f16", "name": "f16" },
{ "value": "bf16", "name": "bf16" },
{ "value": "q8_0", "name": "q8_0" },
{ "value": "q4_0", "name": "q4_0" },
{ "value": "q4_1", "name": "q4_1" },
{ "value": "iq4_nl", "name": "iq4_nl" },
{ "value": "q5_0", "name": "q5_0" },
{ "value": "q5_1", "name": "q5_1" }
]
}
},
{
"key": "cache_type_v",
"title": "KV Cache V Type",
"description": "KV cache data type for Values (default: f16).",
"controllerType": "dropdown",
"controllerProps": {
"value": "f16",
"options": [
{ "value": "f32", "name": "f32" },
{ "value": "f16", "name": "f16" },
{ "value": "bf16", "name": "bf16" },
{ "value": "q8_0", "name": "q8_0" },
{ "value": "q4_0", "name": "q4_0" },
{ "value": "q4_1", "name": "q4_1" },
{ "value": "iq4_nl", "name": "iq4_nl" },
{ "value": "q5_0", "name": "q5_0" },
{ "value": "q5_1", "name": "q5_1" }
]
}
},
{
"key": "defrag_thold",
"title": "KV Cache Defragmentation Threshold",
"description": "Threshold for KV cache defragmentation (< 0 to disable).",
"controllerType": "input",
"controllerProps": {
"value": 0.1,
"placeholder": "0.1",
"type": "number",
"textAlign": "right",
"step": 0.01
}
},
{
"key": "rope_scaling",
"title": "RoPE Scaling Method",
"description": "RoPE frequency scaling method.",
"controllerType": "dropdown",
"controllerProps": {
"value": "none",
"options": [
{ "value": "none", "name": "None" },
{ "value": "linear", "name": "Linear" },
{ "value": "yarn", "name": "YaRN" }
]
}
},
{
"key": "rope_scale",
"title": "RoPE Scale Factor",
"description": "RoPE context scaling factor.",
"controllerType": "input",
"controllerProps": {
"value": 1.0,
"placeholder": "1.0",
"type": "number",
"textAlign": "right",
"min": 0,
"step": 0.01
}
},
{
"key": "rope_freq_base",
"title": "RoPE Frequency Base",
"description": "RoPE base frequency (0 = loaded from model).",
"controllerType": "input",
"controllerProps": {
"value": 0,
"placeholder": "0 (model default)",
"type": "number",
"textAlign": "right"
}
},
{
"key": "rope_freq_scale",
"title": "RoPE Frequency Scale Factor",
"description": "RoPE frequency scaling factor.",
"controllerType": "input",
"controllerProps": {
"value": 1.0,
"placeholder": "1.0",
"type": "number",
"textAlign": "right",
"min": 0,
"step": 0.01
}
},
{
"key": "mirostat",
"title": "Mirostat Mode",
"description": "Use Mirostat sampling (0: disabled, 1: Mirostat V1, 2: Mirostat V2).",
"controllerType": "dropdown",
"controllerProps": {
"value": 0,
"options": [
{ "value": 0, "name": "Disabled" },
{ "value": 1, "name": "Mirostat V1" },
{ "value": 2, "name": "Mirostat V2" }
]
}
},
{
"key": "mirostat_lr",
"title": "Mirostat Learning Rate",
"description": "Mirostat learning rate (eta).",
"controllerType": "input",
"controllerProps": {
"value": 0.1,
"placeholder": "0.1",
"type": "number",
"textAlign": "right",
"min": 0,
"step": 0.01
}
},
{
"key": "mirostat_ent",
"title": "Mirostat Target Entropy",
"description": "Mirostat target entropy (tau).",
"controllerType": "input",
"controllerProps": {
"value": 5.0,
"placeholder": "5.0",
"type": "number",
"textAlign": "right",
"min": 0,
"step": 0.01
}
},
{
"key": "grammar_file",
"title": "Grammar File",
"description": "Path to a BNF-like grammar file to constrain generations.",
"controllerType": "input",
"controllerProps": {
"value": "",
"placeholder": "path/to/grammar.gbnf",
"type": "text"
}
},
{
"key": "json_schema_file",
"title": "JSON Schema File",
"description": "Path to a JSON schema file to constrain generations.",
"controllerType": "input",
"controllerProps": {
"value": "",
"placeholder": "path/to/schema.json",
"type": "text"
}
}
]