jan/jan-inference/sd/docker-compose.yml
2023-08-25 01:31:11 +07:00

99 lines
3.8 KiB
YAML

version: '3'
services:
# Service to download a model file.
downloader:
build:
context: ./
dockerfile: compile.Dockerfile
# platform: "linux/amd64"
# The command extracts the model filename from MODEL_URL and downloads it if it doesn't exist.
command: /bin/sh -c "SD_MODEL_FILE=$(basename ${MODEL_URL}); if [ ! -f /converted_models/*.bin ]; then wget -O /converted_models/$SD_MODEL_FILE ${MODEL_URL}; python /sd.cpp/models/convert.py --out_type q4_0 --out_file /converted_models/$SD_MODEL_FILE; fi"
# Mount a local directory to store the downloaded model.
volumes:
- ./models:/converted_models
# Service to wait for the downloader service to finish downloading the model.
wait-for-downloader:
image: busybox
# The command waits until the model file (specified in MODEL_URL) exists.
command: /bin/sh -c "SD_MODEL_FILE=$(basename ${MODEL_URL}); echo 'Waiting for downloader to finish'; while [ ! -f /models/*.bin ]; do sleep 1; done; echo 'Model downloaded and converted!'"
# Specifies that this service should start after the downloader service has started.
depends_on:
downloader:
condition: service_started
# Mount the same local directory to check for the downloaded model.
volumes:
- ./models:/models
# Service to run the SD web application.
sd:
build:
context: ./
dockerfile: inference.Dockerfile
# Mount the directory that contains the downloaded model.
volumes:
- ./models:/models
- ./output/:/serving/output
command: /bin/bash -c "python -m uvicorn main:app --proxy-headers --host 0.0.0.0 --port 8000"
# platform: "linux/amd64"
environment:
# Specify the path to the model for the web application.
BASE_URL: http://0.0.0.0:8000
MODEL_NAME: "v1-5-pruned-emaonly-ggml-model-q5_0.bin"
MODEL_DIR: "/models"
SD_PATH: "/sd"
PYTHONUNBUFFERED: 1
ports:
- 8000:8000
# Health check configuration
healthcheck:
test: ["CMD", "wget", "--quiet", "--tries=1", "--spider", "http://localhost:8000"]
interval: 30s
timeout: 10s
retries: 3
start_period: 30s
# Restart policy configuration
restart: on-failure
# Specifies that this service should start only after wait-for-downloader has completed successfully.
depends_on:
wait-for-downloader:
condition: service_completed_successfully
# Connect this service to two networks: inference_net and traefik_public.
networks:
- inference_net
- traefik_public
# Service for Traefik, a modern HTTP reverse proxy and load balancer.
traefik:
image: traefik:v2.5
command:
# Enable the Traefik API dashboard without TLS (not recommended for production).
- "--api.insecure=true"
# Enable Traefik to use Docker as a provider.
- "--providers.docker=true"
# Do not expose services by default. Explicitly specify in each service if it should be exposed.
- "--providers.docker.exposedbydefault=false"
# Specify the default entry point on port 80.
- "--entrypoints.web.address=:80"
ports:
# Map port 80 in the container to port 80 on the host.
- "80:80"
# Map port 8080 in the container (Traefik's dashboard) to port 8080 on the host.
- "8080:8080"
# Mount the Docker socket to allow Traefik to listen to Docker's API.
volumes:
- /var/run/docker.sock:/var/run/docker.sock
# Connect this service to the traefik_public network.
networks:
- traefik_public
# Define networks used in this docker-compose file.
networks:
# Network for the llm service (used for inference).
inference_net:
# Public-facing network that Traefik uses. Marked as external to indicate it may be defined outside this file.
traefik_public:
external: true