jan/docs/openapi/jan.yaml
2023-11-19 23:38:29 +08:00

9739 lines
326 KiB
YAML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

openapi: 3.0.0
info:
title: OpenAI API
description: The OpenAI REST API. Please see https://platform.openai.com/docs/api-reference for more details.
version: "2.0.0"
termsOfService: https://openai.com/policies/terms-of-use
contact:
name: OpenAI Support
url: https://help.openai.com/
license:
name: MIT
url: https://github.com/openai/openai-openapi/blob/master/LICENSE
servers:
- url: https://api.openai.com/v1
tags:
- name: Assistants
description: Build Assistants that can call models and use tools.
- name: Audio
description: Learn how to turn audio into text or text into audio.
- name: Chat
description: Given a list of messages comprising a conversation, the model will return a response.
- name: Completions
description: Given a prompt, the model will return one or more predicted completions, and can also return the probabilities of alternative tokens at each position.
- name: Embeddings
description: Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms.
- name: Fine-tuning
description: Manage fine-tuning jobs to tailor a model to your specific training data.
- name: Files
description: Files are used to upload documents that can be used with features like Assistants and Fine-tuning.
- name: Images
description: Given a prompt and/or an input image, the model will generate a new image.
- name: Models
description: List and describe the various models available in the API.
- name: Moderations
description: Given a input text, outputs if the model classifies it as violating OpenAI's content policy.
- name: Fine-tunes
description: Manage legacy fine-tuning jobs to tailor a model to your specific training data.
- name: Edits
description: Given a prompt and an instruction, the model will return an edited version of the prompt.
paths:
# Note: When adding an endpoint, make sure you also add it in the `groups` section, in the end of this file,
# under the appropriate group
/chat/completions:
post:
operationId: createChatCompletion
tags:
- Chat
summary: Creates a model response for the given chat conversation.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateChatCompletionRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/CreateChatCompletionResponse"
x-oaiMeta:
name: Create chat completion
group: chat
returns: |
Returns a [chat completion](/docs/api-reference/chat/object) object, or a streamed sequence of [chat completion chunk](/docs/api-reference/chat/streaming) objects if the request is streamed.
path: create
examples:
- title: Default
request:
curl: |
curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "VAR_model_id",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Hello!"
}
]
}'
python: |
from openai import OpenAI
client = OpenAI()
completion = client.chat.completions.create(
model="VAR_model_id",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
]
)
print(completion.choices[0].message)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const completion = await openai.chat.completions.create({
messages: [{ role: "system", content: "You are a helpful assistant." }],
model: "VAR_model_id",
});
console.log(completion.choices[0]);
}
main();
response: &chat_completion_example |
{
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "gpt-3.5-turbo-0613",
"system_fingerprint": "fp_44709d6fcb",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": "\n\nHello there, how may I assist you today?",
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": 9,
"completion_tokens": 12,
"total_tokens": 21
}
}
- title: Image input
request:
curl: |
curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "gpt-4-vision-preview",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
}
}
]
}
],
"max_tokens": 300
}'
python: |
from openai import OpenAI
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{
"type": "image_url",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
},
],
}
],
max_tokens=300,
)
print(response.choices[0])
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const response = await openai.chat.completions.create({
model: "gpt-4-vision-preview",
messages: [
{
role: "user",
content: [
{ type: "text", text: "Whats in this image?" },
{
type: "image_url",
image_url:
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
},
],
},
],
});
console.log(response.choices[0]);
}
main();
response: &chat_completion_image_example |
{
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "gpt-3.5-turbo-0613",
"system_fingerprint": "fp_44709d6fcb",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": "\n\nHello there, how may I assist you today?",
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": 9,
"completion_tokens": 12,
"total_tokens": 21
}
}
- title: Streaming
request:
curl: |
curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "VAR_model_id",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Hello!"
}
],
"stream": true
}'
python: |
from openai import OpenAI
client = OpenAI()
completion = client.chat.completions.create(
model="VAR_model_id",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream=True
)
for chunk in completion:
print(chunk.choices[0].delta)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const completion = await openai.chat.completions.create({
model: "VAR_model_id",
messages: [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream: true,
});
for await (const chunk of completion) {
console.log(chunk.choices[0].delta.content);
}
}
main();
response: &chat_completion_chunk_example |
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-3.5-turbo-0613", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{"role":"assistant","content":""},"finish_reason":null}]}
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-3.5-turbo-0613", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{"content":"Hello"},"finish_reason":null}]}
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-3.5-turbo-0613", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{"content":"!"},"finish_reason":null}]}
....
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-3.5-turbo-0613", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{"content":" today"},"finish_reason":null}]}
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-3.5-turbo-0613", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{"content":"?"},"finish_reason":null}]}
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-3.5-turbo-0613", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{},"finish_reason":"stop"}]}
- title: Function calling
request:
curl: |
curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "What is the weather like in Boston?"
}
],
"functions": [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
],
"function_call": "auto"
}'
python: |
from openai import OpenAI
client = OpenAI()
functions = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
completion = client.chat.completions.create(
model="VAR_model_id",
messages=messages,
functions=functions,
function_call="auto"
)
print(completion)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const messages = [{"role": "user", "content": "What's the weather like in Boston today?"}];
const functions = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
];
const response = await openai.chat.completions.create({
model: "gpt-3.5-turbo",
messages: messages,
functions: functions,
function_call: "auto", // auto is default, but we'll be explicit
});
console.log(response);
}
main();
response: &chat_completion_function_example |
{
"choices": [
{
"finish_reason": "function_call",
"index": 0,
"message": {
"content": null,
"function_call": {
"arguments": "{\n \"location\": \"Boston, MA\"\n}",
"name": "get_current_weather"
},
"role": "assistant"
}
}
],
"created": 1694028367,
"model": "gpt-3.5-turbo-0613",
"system_fingerprint": "fp_44709d6fcb",
"object": "chat.completion",
"usage": {
"completion_tokens": 18,
"prompt_tokens": 82,
"total_tokens": 100
}
}
/completions:
post:
operationId: createCompletion
tags:
- Completions
summary: Creates a completion for the provided prompt and parameters.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateCompletionRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/CreateCompletionResponse"
x-oaiMeta:
name: Create completion
returns: |
Returns a [completion](/docs/api-reference/completions/object) object, or a sequence of completion objects if the request is streamed.
legacy: true
examples:
- title: No streaming
request:
curl: |
curl https://api.openai.com/v1/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "VAR_model_id",
"prompt": "Say this is a test",
"max_tokens": 7,
"temperature": 0
}'
python: |
from openai import OpenAI
client = OpenAI()
client.completions.create(
model="VAR_model_id",
prompt="Say this is a test",
max_tokens=7,
temperature=0
)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const completion = await openai.completions.create({
model: "VAR_model_id",
prompt: "Say this is a test.",
max_tokens: 7,
temperature: 0,
});
console.log(completion);
}
main();
response: |
{
"id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7",
"object": "text_completion",
"created": 1589478378,
"model": "VAR_model_id",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"text": "\n\nThis is indeed a test",
"index": 0,
"logprobs": null,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": 5,
"completion_tokens": 7,
"total_tokens": 12
}
}
- title: Streaming
request:
curl: |
curl https://api.openai.com/v1/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "VAR_model_id",
"prompt": "Say this is a test",
"max_tokens": 7,
"temperature": 0,
"stream": true
}'
python: |
from openai import OpenAI
client = OpenAI()
for chunk in client.completions.create(
model="VAR_model_id",
prompt="Say this is a test",
max_tokens=7,
temperature=0,
stream=True
):
print(chunk.choices[0].text)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const stream = await openai.completions.create({
model: "VAR_model_id",
prompt: "Say this is a test.",
stream: true,
});
for await (const chunk of stream) {
console.log(chunk.choices[0].text)
}
}
main();
response: |
{
"id": "cmpl-7iA7iJjj8V2zOkCGvWF2hAkDWBQZe",
"object": "text_completion",
"created": 1690759702,
"choices": [
{
"text": "This",
"index": 0,
"logprobs": null,
"finish_reason": null
}
],
"model": "gpt-3.5-turbo-instruct"
"system_fingerprint": "fp_44709d6fcb",
}
/edits:
post:
operationId: createEdit
deprecated: true
tags:
- Edits
summary: Creates a new edit for the provided input, instruction, and parameters.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateEditRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/CreateEditResponse"
x-oaiMeta:
name: Create edit
returns: |
Returns an [edit](/docs/api-reference/edits/object) object.
group: edits
examples:
request:
curl: |
curl https://api.openai.com/v1/edits \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "VAR_model_id",
"input": "What day of the wek is it?",
"instruction": "Fix the spelling mistakes"
}'
python: |
from openai import OpenAI
client = OpenAI()
client.edits.create(
model="VAR_model_id",
input="What day of the wek is it?",
instruction="Fix the spelling mistakes"
)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const edit = await openai.edits.create({
model: "VAR_model_id",
input: "What day of the wek is it?",
instruction: "Fix the spelling mistakes.",
});
console.log(edit);
}
main();
response: &edit_example |
{
"object": "edit",
"created": 1589478378,
"choices": [
{
"text": "What day of the week is it?",
"index": 0,
}
],
"usage": {
"prompt_tokens": 25,
"completion_tokens": 32,
"total_tokens": 57
}
}
/images/generations:
post:
operationId: createImage
tags:
- Images
summary: Creates an image given a prompt.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateImageRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ImagesResponse"
x-oaiMeta:
name: Create image
returns: Returns a list of [image](/docs/api-reference/images/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/images/generations \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "dall-e-3",
"prompt": "A cute baby sea otter",
"n": 1,
"size": "1024x1024"
}'
python: |
from openai import OpenAI
client = OpenAI()
client.images.generate(
model="dall-e-3",
prompt="A cute baby sea otter",
n=1,
size="1024x1024"
)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const image = await openai.images.generate({ model: "dall-e-3", prompt: "A cute baby sea otter" });
console.log(image.data);
}
main();
response: |
{
"created": 1589478378,
"data": [
{
"url": "https://..."
},
{
"url": "https://..."
}
]
}
/images/edits:
post:
operationId: createImageEdit
tags:
- Images
summary: Creates an edited or extended image given an original image and a prompt.
requestBody:
required: true
content:
multipart/form-data:
schema:
$ref: "#/components/schemas/CreateImageEditRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ImagesResponse"
x-oaiMeta:
name: Create image edit
returns: Returns a list of [image](/docs/api-reference/images/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/images/edits \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-F image="@otter.png" \
-F mask="@mask.png" \
-F prompt="A cute baby sea otter wearing a beret" \
-F n=2 \
-F size="1024x1024"
python: |
from openai import OpenAI
client = OpenAI()
client.images.edit(
image=open("otter.png", "rb"),
mask=open("mask.png", "rb"),
prompt="A cute baby sea otter wearing a beret",
n=2,
size="1024x1024"
)
node.js: |-
import fs from "fs";
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const image = await openai.images.edit({
image: fs.createReadStream("otter.png"),
mask: fs.createReadStream("mask.png"),
prompt: "A cute baby sea otter wearing a beret",
});
console.log(image.data);
}
main();
response: |
{
"created": 1589478378,
"data": [
{
"url": "https://..."
},
{
"url": "https://..."
}
]
}
/images/variations:
post:
operationId: createImageVariation
tags:
- Images
summary: Creates a variation of a given image.
requestBody:
required: true
content:
multipart/form-data:
schema:
$ref: "#/components/schemas/CreateImageVariationRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ImagesResponse"
x-oaiMeta:
name: Create image variation
returns: Returns a list of [image](/docs/api-reference/images/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/images/variations \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-F image="@otter.png" \
-F n=2 \
-F size="1024x1024"
python: |
from openai import OpenAI
client = OpenAI()
response = client.images.create_variation(
image=open("image_edit_original.png", "rb"),
n=2,
size="1024x1024"
)
node.js: |-
import fs from "fs";
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const image = await openai.images.createVariation({
image: fs.createReadStream("otter.png"),
});
console.log(image.data);
}
main();
response: |
{
"created": 1589478378,
"data": [
{
"url": "https://..."
},
{
"url": "https://..."
}
]
}
/embeddings:
post:
operationId: createEmbedding
tags:
- Embeddings
summary: Creates an embedding vector representing the input text.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateEmbeddingRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/CreateEmbeddingResponse"
x-oaiMeta:
name: Create embeddings
returns: A list of [embedding](/docs/api-reference/embeddings/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/embeddings \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"input": "The food was delicious and the waiter...",
"model": "text-embedding-ada-002",
"encoding_format": "float"
}'
python: |
from openai import OpenAI
client = OpenAI()
client.embeddings.create(
model="text-embedding-ada-002",
input="The food was delicious and the waiter...",
encoding_format="float"
)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const embedding = await openai.embeddings.create({
model: "text-embedding-ada-002",
input: "The quick brown fox jumped over the lazy dog",
encoding_format: "float",
});
console.log(embedding);
}
main();
response: |
{
"object": "list",
"data": [
{
"object": "embedding",
"embedding": [
0.0023064255,
-0.009327292,
.... (1536 floats total for ada-002)
-0.0028842222,
],
"index": 0
}
],
"model": "text-embedding-ada-002",
"usage": {
"prompt_tokens": 8,
"total_tokens": 8
}
}
/audio/speech:
post:
operationId: createSpeech
tags:
- Audio
summary: Generates audio from the input text.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateSpeechRequest"
responses:
"200":
description: OK
headers:
Transfer-Encoding:
schema:
type: string
description: chunked
content:
application/octet-stream:
schema:
type: string
format: binary
x-oaiMeta:
name: Create speech
returns: The audio file content.
examples:
request:
curl: |
curl https://api.openai.com/v1/audio/speech \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "tts-1",
"input": "The quick brown fox jumped over the lazy dog.",
"voice": "alloy"
}' \
--output speech.mp3
python: |
from pathlib import Path
import openai
speech_file_path = Path(__file__).parent / "speech.mp3"
response = openai.audio.speech.create(
model="tts-1",
voice="alloy",
input="The quick brown fox jumped over the lazy dog."
)
response.stream_to_file(speech_file_path)
node: |
import fs from "fs";
import path from "path";
import OpenAI from "openai";
const openai = new OpenAI();
const speechFile = path.resolve("./speech.mp3");
async function main() {
const mp3 = await openai.audio.speech.create({
model: "tts-1",
voice: "alloy",
input: "Today is a wonderful day to build something people love!",
});
console.log(speechFile);
const buffer = Buffer.from(await mp3.arrayBuffer());
await fs.promises.writeFile(speechFile, buffer);
}
main();
/audio/transcriptions:
post:
operationId: createTranscription
tags:
- Audio
summary: Transcribes audio into the input language.
requestBody:
required: true
content:
multipart/form-data:
schema:
$ref: "#/components/schemas/CreateTranscriptionRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/CreateTranscriptionResponse"
x-oaiMeta:
name: Create transcription
returns: The transcribed text.
examples:
request:
curl: |
curl https://api.openai.com/v1/audio/transcriptions \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: multipart/form-data" \
-F file="@/path/to/file/audio.mp3" \
-F model="whisper-1"
python: |
from openai import OpenAI
client = OpenAI()
audio_file = open("speech.mp3", "rb")
transcript = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file
)
node: |
import fs from "fs";
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const transcription = await openai.audio.transcriptions.create({
file: fs.createReadStream("audio.mp3"),
model: "whisper-1",
});
console.log(transcription.text);
}
main();
response: |
{
"text": "Imagine the wildest idea that you've ever had, and you're curious about how it might scale to something that's a 100, a 1,000 times bigger. This is a place where you can get to do that."
}
/audio/translations:
post:
operationId: createTranslation
tags:
- Audio
summary: Translates audio into English.
requestBody:
required: true
content:
multipart/form-data:
schema:
$ref: "#/components/schemas/CreateTranslationRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/CreateTranslationResponse"
x-oaiMeta:
name: Create translation
returns: The translated text.
examples:
request:
curl: |
curl https://api.openai.com/v1/audio/translations \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: multipart/form-data" \
-F file="@/path/to/file/german.m4a" \
-F model="whisper-1"
python: |
from openai import OpenAI
client = OpenAI()
audio_file = open("speech.mp3", "rb")
transcript = client.audio.translations.create(
model="whisper-1",
file=audio_file
)
node: |
const { Configuration, OpenAIApi } = require("openai");
const configuration = new Configuration({
apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(configuration);
const resp = await openai.createTranslation(
fs.createReadStream("audio.mp3"),
"whisper-1"
);
response: |
{
"text": "Hello, my name is Wolfgang and I come from Germany. Where are you heading today?"
}
/files:
get:
operationId: listFiles
tags:
- Files
summary: Returns a list of files that belong to the user's organization.
parameters:
- in: query
name: purpose
required: false
schema:
type: string
description: Only return files with the given purpose.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListFilesResponse"
x-oaiMeta:
name: List files
returns: A list of [File](/docs/api-reference/files/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/files \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.files.list()
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const list = await openai.files.list();
for await (const file of list) {
console.log(file);
}
}
main();
response: |
{
"data": [
{
"id": "file-abc123",
"object": "file",
"bytes": 175,
"created_at": 1613677385,
"filename": "salesOverview.pdf",
"purpose": "assistants",
},
{
"id": "file-abc123",
"object": "file",
"bytes": 140,
"created_at": 1613779121,
"filename": "puppy.jsonl",
"purpose": "fine-tune",
}
],
"object": "list"
}
post:
operationId: createFile
tags:
- Files
summary: |
Upload a file that can be used across various endpoints/features. The size of all the files uploaded by one organization can be up to 100 GB.
The size of individual files for can be a maximum of 512MB. See the [Assistants Tools guide](/docs/assistants/tools) to learn more about the types of files supported. The Fine-tuning API only supports `.jsonl` files.
Please [contact us](https://help.openai.com/) if you need to increase these storage limits.
requestBody:
required: true
content:
multipart/form-data:
schema:
$ref: "#/components/schemas/CreateFileRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/OpenAIFile"
x-oaiMeta:
name: Upload file
returns: The uploaded [File](/docs/api-reference/files/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/files \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-F purpose="fine-tune" \
-F file="@mydata.jsonl"
python: |
from openai import OpenAI
client = OpenAI()
client.files.create(
file=open("mydata.jsonl", "rb"),
purpose="fine-tune"
)
node.js: |-
import fs from "fs";
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const file = await openai.files.create({
file: fs.createReadStream("mydata.jsonl"),
purpose: "fine-tune",
});
console.log(file);
}
main();
response: |
{
"id": "file-BK7bzQj3FfZFXr7DbL6xJwfo",
"object": "file",
"bytes": 120000,
"created_at": 1677610602,
"filename": "mydata.jsonl",
"purpose": "fine-tune",
}
/files/{file_id}:
delete:
operationId: deleteFile
tags:
- Files
summary: Delete a file.
parameters:
- in: path
name: file_id
required: true
schema:
type: string
description: The ID of the file to use for this request.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/DeleteFileResponse"
x-oaiMeta:
name: Delete file
returns: Deletion status.
examples:
request:
curl: |
curl https://api.openai.com/v1/files/file-abc123 \
-X DELETE \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.files.delete("file-oaG6vwLtV3v3mWpvxexWDKxq")
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const file = await openai.files.del("file-abc123");
console.log(file);
}
main();
response: |
{
"id": "file-abc123",
"object": "file",
"deleted": true
}
get:
operationId: retrieveFile
tags:
- Files
summary: Returns information about a specific file.
parameters:
- in: path
name: file_id
required: true
schema:
type: string
description: The ID of the file to use for this request.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/OpenAIFile"
x-oaiMeta:
name: Retrieve file
returns: The [File](/docs/api-reference/files/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/files/file-BK7bzQj3FfZFXr7DbL6xJwfo \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.files.retrieve("file-BK7bzQj3FfZFXr7DbL6xJwfo")
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const file = await openai.files.retrieve("file-BK7bzQj3FfZFXr7DbL6xJwfo");
console.log(file);
}
main();
response: |
{
"id": "file-BK7bzQj3FfZFXr7DbL6xJwfo",
"object": "file",
"bytes": 120000,
"created_at": 1677610602,
"filename": "mydata.jsonl",
"purpose": "fine-tune",
}
/files/{file_id}/content:
get:
operationId: downloadFile
tags:
- Files
summary: Returns the contents of the specified file.
parameters:
- in: path
name: file_id
required: true
schema:
type: string
description: The ID of the file to use for this request.
responses:
"200":
description: OK
content:
application/json:
schema:
type: string
x-oaiMeta:
name: Retrieve file content
returns: The file content.
examples:
request:
curl: |
curl https://api.openai.com/v1/files/file-BK7bzQj3FfZFXr7DbL6xJwfo/content \
-H "Authorization: Bearer $OPENAI_API_KEY" > file.jsonl
python: |
from openai import OpenAI
client = OpenAI()
content = client.files.retrieve_content("file-BK7bzQj3FfZFXr7DbL6xJwfo")
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const file = await openai.files.retrieveContent("file-BK7bzQj3FfZFXr7DbL6xJwfo");
console.log(file);
}
main();
/fine_tuning/jobs:
post:
operationId: createFineTuningJob
tags:
- Fine-tuning
summary: |
Creates a job that fine-tunes a specified model from a given dataset.
Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete.
[Learn more about fine-tuning](/docs/guides/fine-tuning)
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateFineTuningJobRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/FineTuningJob"
x-oaiMeta:
name: Create fine-tuning job
returns: A [fine-tuning.job](/docs/api-reference/fine-tuning/object) object.
examples:
- title: No hyperparameters
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"training_file": "file-BK7bzQj3FfZFXr7DbL6xJwfo",
"model": "gpt-3.5-turbo"
}'
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.create(
training_file="file-abc123",
model="gpt-3.5-turbo"
)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTuning.jobs.create({
training_file: "file-abc123"
});
console.log(fineTune);
}
main();
response: |
{
"object": "fine_tuning.job",
"id": "ftjob-abc123",
"model": "gpt-3.5-turbo-0613",
"created_at": 1614807352,
"fine_tuned_model": null,
"organization_id": "org-123",
"result_files": [],
"status": "queued",
"validation_file": null,
"training_file": "file-abc123",
}
- title: Hyperparameters
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"training_file": "file-abc123",
"model": "gpt-3.5-turbo",
"hyperparameters": {
"n_epochs": 2
}
}'
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.create(
training_file="file-abc123",
model="gpt-3.5-turbo",
hyperparameters={
"n_epochs":2
}
)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTuning.jobs.create({
training_file: "file-abc123",
model: "gpt-3.5-turbo",
hyperparameters: { n_epochs: 2 }
});
console.log(fineTune);
}
main();
response: |
{
"object": "fine_tuning.job",
"id": "ftjob-abc123",
"model": "gpt-3.5-turbo-0613",
"created_at": 1614807352,
"fine_tuned_model": null,
"organization_id": "org-123",
"result_files": [],
"status": "queued",
"validation_file": null,
"training_file": "file-abc123",
"hyperparameters": {"n_epochs": 2},
}
- title: Validation file
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"training_file": "file-abc123",
"validation_file": "file-abc123",
"model": "gpt-3.5-turbo"
}'
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.create(
training_file="file-abc123",
validation_file="file-def456",
model="gpt-3.5-turbo"
)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTuning.jobs.create({
training_file: "file-abc123",
validation_file: "file-abc123"
});
console.log(fineTune);
}
main();
response: |
{
"object": "fine_tuning.job",
"id": "ftjob-abc123",
"model": "gpt-3.5-turbo-0613",
"created_at": 1614807352,
"fine_tuned_model": null,
"organization_id": "org-123",
"result_files": [],
"status": "queued",
"validation_file": "file-abc123",
"training_file": "file-abc123",
}
get:
operationId: listPaginatedFineTuningJobs
tags:
- Fine-tuning
summary: |
List your organization's fine-tuning jobs
parameters:
- name: after
in: query
description: Identifier for the last job from the previous pagination request.
required: false
schema:
type: string
- name: limit
in: query
description: Number of fine-tuning jobs to retrieve.
required: false
schema:
type: integer
default: 20
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListPaginatedFineTuningJobsResponse"
x-oaiMeta:
name: List fine-tuning jobs
returns: A list of paginated [fine-tuning job](/docs/api-reference/fine-tuning/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs?limit=2 \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.list()
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const list = await openai.fineTuning.jobs.list();
for await (const fineTune of list) {
console.log(fineTune);
}
}
main();
response: |
{
"object": "list",
"data": [
{
"object": "fine_tuning.job.event",
"id": "ft-event-TjX0lMfOniCZX64t9PUQT5hn",
"created_at": 1689813489,
"level": "warn",
"message": "Fine tuning process stopping due to job cancellation",
"data": null,
"type": "message"
},
{ ... },
{ ... }
], "has_more": true
}
/fine_tuning/jobs/{fine_tuning_job_id}:
get:
operationId: retrieveFineTuningJob
tags:
- Fine-tuning
summary: |
Get info about a fine-tuning job.
[Learn more about fine-tuning](/docs/guides/fine-tuning)
parameters:
- in: path
name: fine_tuning_job_id
required: true
schema:
type: string
example: ft-AF1WoRqd3aJAHsqc9NY7iL8F
description: |
The ID of the fine-tuning job.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/FineTuningJob"
x-oaiMeta:
name: Retrieve fine-tuning job
returns: The [fine-tuning](/docs/api-reference/fine-tunes/object) object with the given ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs/ft-AF1WoRqd3aJAHsqc9NY7iL8F \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.retrieve("ftjob-abc123")
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTuning.jobs.retrieve("ftjob-abc123");
console.log(fineTune);
}
main();
response: &fine_tuning_example |
{
"object": "fine_tuning.job",
"id": "ftjob-abc123",
"model": "davinci-002",
"created_at": 1692661014,
"finished_at": 1692661190,
"fine_tuned_model": "ft:davinci-002:my-org:custom_suffix:7q8mpxmy",
"organization_id": "org-123",
"result_files": [
"file-abc123"
],
"status": "succeeded",
"validation_file": null,
"training_file": "file-abc123",
"hyperparameters": {
"n_epochs": 4,
},
"trained_tokens": 5768
}
/fine_tuning/jobs/{fine_tuning_job_id}/events:
get:
operationId: listFineTuningEvents
tags:
- Fine-tuning
summary: |
Get status updates for a fine-tuning job.
parameters:
- in: path
name: fine_tuning_job_id
required: true
schema:
type: string
example: ft-AF1WoRqd3aJAHsqc9NY7iL8F
description: |
The ID of the fine-tuning job to get events for.
- name: after
in: query
description: Identifier for the last event from the previous pagination request.
required: false
schema:
type: string
- name: limit
in: query
description: Number of events to retrieve.
required: false
schema:
type: integer
default: 20
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListFineTuningJobEventsResponse"
x-oaiMeta:
name: List fine-tuning events
returns: A list of fine-tuning event objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs/ftjob-abc123/events \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.list_events(
fine_tuning_job_id="ftjob-abc123",
limit=2
)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const list = await openai.fineTuning.list_events(id="ftjob-abc123", limit=2);
for await (const fineTune of list) {
console.log(fineTune);
}
}
main();
response: |
{
"object": "list",
"data": [
{
"object": "fine_tuning.job.event",
"id": "ft-event-ddTJfwuMVpfLXseO0Am0Gqjm",
"created_at": 1692407401,
"level": "info",
"message": "Fine tuning job successfully completed",
"data": null,
"type": "message"
},
{
"object": "fine_tuning.job.event",
"id": "ft-event-tyiGuB72evQncpH87xe505Sv",
"created_at": 1692407400,
"level": "info",
"message": "New fine-tuned model created: ft:gpt-3.5-turbo:openai::7p4lURel",
"data": null,
"type": "message"
}
],
"has_more": true
}
/fine_tuning/jobs/{fine_tuning_job_id}/cancel:
post:
operationId: cancelFineTuningJob
tags:
- Fine-tuning
summary: |
Immediately cancel a fine-tune job.
parameters:
- in: path
name: fine_tuning_job_id
required: true
schema:
type: string
example: ft-AF1WoRqd3aJAHsqc9NY7iL8F
description: |
The ID of the fine-tuning job to cancel.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/FineTuningJob"
x-oaiMeta:
name: Cancel fine-tuning
returns: The cancelled [fine-tuning](/docs/api-reference/fine-tuning/object) object.
examples:
request:
curl: |
curl -X POST https://api.openai.com/v1/fine_tuning/jobs/ftjob-abc123/cancel \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.cancel("ftjob-abc123")
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTuning.jobs.cancel("ftjob-abc123");
console.log(fineTune);
}
main();
response: |
{
"object": "fine_tuning.job",
"id": "ftjob-abc123",
"model": "gpt-3.5-turbo-0613",
"created_at": 1689376978,
"fine_tuned_model": null,
"organization_id": "org-123",
"result_files": [],
"hyperparameters": {
"n_epochs": "auto"
},
"status": "cancelled",
"validation_file": "file-abc123",
"training_file": "file-abc123"
}
/fine-tunes:
post:
operationId: createFineTune
deprecated: true
tags:
- Fine-tunes
summary: |
Creates a job that fine-tunes a specified model from a given dataset.
Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete.
[Learn more about fine-tuning](/docs/guides/legacy-fine-tuning)
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateFineTuneRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/FineTune"
x-oaiMeta:
name: Create fine-tune
returns: A [fine-tune](/docs/api-reference/fine-tunes/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/fine-tunes \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"training_file": "file-abc123"
}'
python: |
# deprecated
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTunes.create({
training_file: "file-abc123"
});
console.log(fineTune);
}
main();
response: |
{
"id": "ft-AF1WoRqd3aJAHsqc9NY7iL8F",
"object": "fine-tune",
"model": "curie",
"created_at": 1614807352,
"events": [
{
"object": "fine-tune-event",
"created_at": 1614807352,
"level": "info",
"message": "Job enqueued. Waiting for jobs ahead to complete. Queue number: 0."
}
],
"fine_tuned_model": null,
"hyperparams": {
"batch_size": 4,
"learning_rate_multiplier": 0.1,
"n_epochs": 4,
"prompt_loss_weight": 0.1,
},
"organization_id": "org-123",
"result_files": [],
"status": "pending",
"validation_files": [],
"training_files": [
{
"id": "file-abc123",
"object": "file",
"bytes": 1547276,
"created_at": 1610062281,
"filename": "my-data-train.jsonl",
"purpose": "fine-tune-results"
}
],
"updated_at": 1614807352,
}
get:
operationId: listFineTunes
deprecated: true
tags:
- Fine-tunes
summary: |
List your organization's fine-tuning jobs
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListFineTunesResponse"
x-oaiMeta:
name: List fine-tunes
returns: A list of [fine-tune](/docs/api-reference/fine-tunes/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/fine-tunes \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
# deprecated
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const list = await openai.fineTunes.list();
for await (const fineTune of list) {
console.log(fineTune);
}
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "ft-AF1WoRqd3aJAHsqc9NY7iL8F",
"object": "fine-tune",
"model": "curie",
"created_at": 1614807352,
"fine_tuned_model": null,
"hyperparams": { ... },
"organization_id": "org-123",
"result_files": [],
"status": "pending",
"validation_files": [],
"training_files": [ { ... } ],
"updated_at": 1614807352,
},
{ ... },
{ ... }
]
}
/fine-tunes/{fine_tune_id}:
get:
operationId: retrieveFineTune
deprecated: true
tags:
- Fine-tunes
summary: |
Gets info about the fine-tune job.
[Learn more about fine-tuning](/docs/guides/legacy-fine-tuning)
parameters:
- in: path
name: fine_tune_id
required: true
schema:
type: string
example: ft-AF1WoRqd3aJAHsqc9NY7iL8F
description: |
The ID of the fine-tune job
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/FineTune"
x-oaiMeta:
name: Retrieve fine-tune
returns: The [fine-tune](/docs/api-reference/fine-tunes/object) object with the given ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/fine-tunes/ft-AF1WoRqd3aJAHsqc9NY7iL8F \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
# deprecated
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTunes.retrieve("ft-AF1WoRqd3aJAHsqc9NY7iL8F");
console.log(fineTune);
}
main();
response: &fine_tune_example |
{
"id": "ft-AF1WoRqd3aJAHsqc9NY7iL8F",
"object": "fine-tune",
"model": "curie",
"created_at": 1614807352,
"events": [
{
"object": "fine-tune-event",
"created_at": 1614807352,
"level": "info",
"message": "Job enqueued. Waiting for jobs ahead to complete. Queue number: 0."
},
{
"object": "fine-tune-event",
"created_at": 1614807356,
"level": "info",
"message": "Job started."
},
{
"object": "fine-tune-event",
"created_at": 1614807861,
"level": "info",
"message": "Uploaded snapshot: curie:ft-acmeco-2021-03-03-21-44-20."
},
{
"object": "fine-tune-event",
"created_at": 1614807864,
"level": "info",
"message": "Uploaded result files: file-abc123."
},
{
"object": "fine-tune-event",
"created_at": 1614807864,
"level": "info",
"message": "Job succeeded."
}
],
"fine_tuned_model": "curie:ft-acmeco-2021-03-03-21-44-20",
"hyperparams": {
"batch_size": 4,
"learning_rate_multiplier": 0.1,
"n_epochs": 4,
"prompt_loss_weight": 0.1,
},
"organization_id": "org-123",
"result_files": [
{
"id": "file-abc123",
"object": "file",
"bytes": 81509,
"created_at": 1614807863,
"filename": "compiled_results.csv",
"purpose": "fine-tune-results"
}
],
"status": "succeeded",
"validation_files": [],
"training_files": [
{
"id": "file-abc123",
"object": "file",
"bytes": 1547276,
"created_at": 1610062281,
"filename": "my-data-train.jsonl",
"purpose": "fine-tune"
}
],
"updated_at": 1614807865,
}
/fine-tunes/{fine_tune_id}/cancel:
post:
operationId: cancelFineTune
deprecated: true
tags:
- Fine-tunes
summary: |
Immediately cancel a fine-tune job.
parameters:
- in: path
name: fine_tune_id
required: true
schema:
type: string
example: ft-AF1WoRqd3aJAHsqc9NY7iL8F
description: |
The ID of the fine-tune job to cancel
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/FineTune"
x-oaiMeta:
name: Cancel fine-tune
returns: The cancelled [fine-tune](/docs/api-reference/fine-tunes/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/fine-tunes/ft-AF1WoRqd3aJAHsqc9NY7iL8F/cancel \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
# deprecated
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTunes.cancel("ft-AF1WoRqd3aJAHsqc9NY7iL8F");
console.log(fineTune);
}
main();
response: |
{
"id": "ft-xhrpBbvVUzYGo8oUO1FY4nI7",
"object": "fine-tune",
"model": "curie",
"created_at": 1614807770,
"events": [ { ... } ],
"fine_tuned_model": null,
"hyperparams": { ... },
"organization_id": "org-123",
"result_files": [],
"status": "cancelled",
"validation_files": [],
"training_files": [
{
"id": "file-abc123",
"object": "file",
"bytes": 1547276,
"created_at": 1610062281,
"filename": "my-data-train.jsonl",
"purpose": "fine-tune"
}
],
"updated_at": 1614807789,
}
/fine-tunes/{fine_tune_id}/events:
get:
operationId: listFineTuneEvents
deprecated: true
tags:
- Fine-tunes
summary: |
Get fine-grained status updates for a fine-tune job.
parameters:
- in: path
name: fine_tune_id
required: true
schema:
type: string
example: ft-AF1WoRqd3aJAHsqc9NY7iL8F
description: |
The ID of the fine-tune job to get events for.
- in: query
name: stream
required: false
schema:
type: boolean
default: false
description: |
Whether to stream events for the fine-tune job. If set to true,
events will be sent as data-only
[server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
as they become available. The stream will terminate with a
`data: [DONE]` message when the job is finished (succeeded, cancelled,
or failed).
If set to false, only events generated so far will be returned.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListFineTuneEventsResponse"
x-oaiMeta:
name: List fine-tune events
returns: A list of fine-tune event objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/fine-tunes/ft-AF1WoRqd3aJAHsqc9NY7iL8F/events \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
# deprecated
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTunes.listEvents("ft-AF1WoRqd3aJAHsqc9NY7iL8F");
console.log(fineTune);
}
main();
response: |
{
"object": "list",
"data": [
{
"object": "fine-tune-event",
"created_at": 1614807352,
"level": "info",
"message": "Job enqueued. Waiting for jobs ahead to complete. Queue number: 0."
},
{
"object": "fine-tune-event",
"created_at": 1614807356,
"level": "info",
"message": "Job started."
},
{
"object": "fine-tune-event",
"created_at": 1614807861,
"level": "info",
"message": "Uploaded snapshot: curie:ft-acmeco-2021-03-03-21-44-20."
},
{
"object": "fine-tune-event",
"created_at": 1614807864,
"level": "info",
"message": "Uploaded result files: file-abc123"
},
{
"object": "fine-tune-event",
"created_at": 1614807864,
"level": "info",
"message": "Job succeeded."
}
]
}
# Models
/models:
get:
operationId: listModels
tags:
- Models
summary: List Models
description: Lists the currently available models, and provides basic information about each one such as the owner and availability.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListModelsResponse"
x-oaiMeta:
name: List models
returns: A list of [model](/docs/api-reference/models/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/models \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.models.list()
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const list = await openai.models.list();
for await (const model of list) {
console.log(model);
}
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "model-id-0",
"object": "model",
"created": 1686935002,
"owned_by": "organization-owner"
},
{
"id": "model-id-1",
"object": "model",
"created": 1686935002,
"owned_by": "organization-owner",
},
{
"id": "model-id-2",
"object": "model",
"created": 1686935002,
"owned_by": "openai"
},
],
"object": "list"
}
post:
operationId: importModel
tags:
- Models
summary: Import Model
description: Imports a model instance. The model can be from a local folder, remote source, or an API endpoint. The model importer will examine the source_url for formatting.
parameters:
- in: path
name: source_url
required: true
schema:
type: string
# ideally this will be an actual ID, so this will always work from browser
example: https://huggingface.com/thebloke/example.gguf
description: The ID of the model to use for this request
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/Model"
x-oaiMeta:
name: Import model
returns: The [model](/docs/api-reference/models/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/models/VAR_model_id \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.models.retrieve("VAR_model_id")
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const model = await openai.models.retrieve("gpt-3.5-turbo");
console.log(model);
}
main();
response: &retrieve_model_response |
{
"id": "VAR_model_id",
"object": "model",
"created": 1686935002,
"owned_by": "openai",
"state": "ready"
}
/models/{model}:
get:
operationId: retrieveModel
tags:
- Models
summary: Retrieve Model
description: Retrieves a model instance, providing basic information about the model such as the owner and permissioning.
parameters:
- in: path
name: model
required: true
schema:
type: string
# ideally this will be an actual ID, so this will always work from browser
example: gpt-3.5-turbo
description: The ID of the model to use for this request
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/Model"
x-oaiMeta:
name: Retrieve model
returns: The [model](/docs/api-reference/models/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/models/VAR_model_id \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.models.retrieve("VAR_model_id")
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const model = await openai.models.retrieve("gpt-3.5-turbo");
console.log(model);
}
main();
response: &retrieve_model_response |
{
"id": "VAR_model_id",
"object": "model",
"created": 1686935002,
"owned_by": "openai"
}
delete:
operationId: deleteModel
tags:
- Models
summary: Delete Model
description: Delete a fine-tuned model. You must have the Owner role in your organization to delete a model.
parameters:
- in: path
name: model
required: true
schema:
type: string
example: ft:gpt-3.5-turbo:acemeco:suffix:abc123
description: The model to delete
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/DeleteModelResponse"
x-oaiMeta:
name: Delete fine-tune model
returns: Deletion status.
examples:
request:
curl: |
curl https://api.openai.com/v1/models/ft:gpt-3.5-turbo:acemeco:suffix:abc123 \
-X DELETE \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.models.delete("ft:gpt-3.5-turbo:acemeco:suffix:abc123")
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const model = await openai.models.del("ft:gpt-3.5-turbo:acemeco:suffix:abc123");
console.log(model);
}
main();
response: |
{
"id": "ft:gpt-3.5-turbo:acemeco:suffix:abc123",
"object": "model",
"deleted": true
}
post:
operationId: startModel
tags:
- Models
summary: Start Model
description: Starts an imported model. Loads the model into V/RAM.
parameters:
- in: path
name: model
required: true
schema:
type: string
# ideally this will be an actual ID, so this will always work from browser
example: gpt-3.5-turbo
description: The ID of the model to use for this request
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/Model"
x-oaiMeta:
name: Import model
returns: The [model](/docs/api-reference/models/object) object matching the specified ID.
examples:
response: &retrieve_model_response |
{
"id": "VAR_model_id",
"object": "model",
"created": 1686935002,
"owned_by": "openai"
}
/models/{model}/stop:
post:
operationId: stopModel
tags:
- Models
summary: Stop Model
description: Stops a running model. Unloads the model from V/RAM.
parameters:
- in: path
name: model
required: true
schema:
type: string
description: The ID of the model that is running.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunObject"
x-oaiMeta:
name: Stop a running model
beta: true
returns: The modified [run](/docs/api-reference/runs/object) object matching the specified ID.
examples:
request:
response: |
{
"todo": "run_BeRGmpGt2wb1VI22ZRniOkrR"
}
/moderations:
post:
operationId: createModeration
tags:
- Moderations
summary: Classifies if text violates OpenAI's Content Policy
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateModerationRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/CreateModerationResponse"
x-oaiMeta:
name: Create moderation
returns: A [moderation](/docs/api-reference/moderations/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/moderations \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"input": "I want to kill them."
}'
python: |
from openai import OpenAI
client = OpenAI()
client.moderations.create(input="I want to kill them.")
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const moderation = await openai.moderations.create({ input: "I want to kill them." });
console.log(moderation);
}
main();
response: &moderation_example |
{
"id": "modr-XXXXX",
"model": "text-moderation-005",
"results": [
{
"flagged": true,
"categories": {
"sexual": false,
"hate": false,
"harassment": false,
"self-harm": false,
"sexual/minors": false,
"hate/threatening": false,
"violence/graphic": false,
"self-harm/intent": false,
"self-harm/instructions": false,
"harassment/threatening": true,
"violence": true,
},
"category_scores": {
"sexual": 1.2282071e-06,
"hate": 0.010696256,
"harassment": 0.29842457,
"self-harm": 1.5236925e-08,
"sexual/minors": 5.7246268e-08,
"hate/threatening": 0.0060676364,
"violence/graphic": 4.435014e-06,
"self-harm/intent": 8.098441e-10,
"self-harm/instructions": 2.8498655e-11,
"harassment/threatening": 0.63055265,
"violence": 0.99011886,
}
}
]
}
# Assistants
/assistants:
get:
operationId: listAssistants
tags:
- Assistants
summary: Returns a list of assistants.
parameters:
- name: limit
in: query
description: &pagination_limit_param_description |
A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20.
required: false
schema:
type: integer
default: 20
- name: order
in: query
description: &pagination_order_param_description |
Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order.
schema:
type: string
default: desc
enum: ["asc", "desc"]
- name: after
in: query
description: &pagination_after_param_description |
A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list.
schema:
type: string
- name: before
in: query
description: &pagination_before_param_description |
A cursor for use in pagination. `before` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include before=obj_foo in order to fetch the previous page of the list.
schema:
type: string
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListAssistantsResponse"
x-oaiMeta:
name: List assistants
beta: true
returns: A list of [assistant](/docs/api-reference/assistants/object) objects.
examples:
request:
curl: |
curl "https://api.openai.com/v1/assistants?order=desc&limit=20" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1"
python: |
from openai import OpenAI
client = OpenAI()
my_assistants = client.beta.assistants.list(
order="desc",
limit="20",
)
print(my_assistants.data)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myAssistants = await openai.beta.assistants.list({
order: "desc",
limit: "20",
});
console.log(myAssistants.data);
}
main();
response: &list_assistants_example |
{
"object": "list",
"data": [
{
"id": "asst_abc123",
"object": "assistant",
"created_at": 1698982736,
"name": "Coding Tutor",
"description": null,
"model": "gpt-4",
"instructions": "You are a helpful assistant designed to make me better at coding!",
"tools": [],
"file_ids": [],
"metadata": {}
},
{
"id": "asst_abc456",
"object": "assistant",
"created_at": 1698982718,
"name": "My Assistant",
"description": null,
"model": "gpt-4",
"instructions": "You are a helpful assistant designed to make me better at coding!",
"tools": [],
"file_ids": [],
"metadata": {}
},
{
"id": "asst_abc789",
"object": "assistant",
"created_at": 1698982643,
"name": null,
"description": null,
"model": "gpt-4",
"instructions": null,
"tools": [],
"file_ids": [],
"metadata": {}
}
],
"first_id": "asst_abc123",
"last_id": "asst_abc789",
"has_more": false
}
post:
operationId: createAssistant
tags:
- Assistants
summary: Create an assistant with a model and instructions.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateAssistantRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/AssistantObject"
x-oaiMeta:
name: Create assistant
beta: true
returns: An [assistant](/docs/api-reference/assistants/object) object.
examples:
- title: Code Interpreter
request:
curl: |
curl "https://api.openai.com/v1/assistants" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1" \
-d '{
"instructions": "You are a personal math tutor. When asked a question, write and run Python code to answer the question.",
"name": "Math Tutor"
"tools": [{"type": "code_interpreter"}],
"model": "gpt-4"
}'
python: |
from openai import OpenAI
client = OpenAI()
my_assistant = client.beta.assistants.create(
instructions="You are a personal math tutor. When asked a question, write and run Python code to answer the question.",
name="Math Tutor",
tools=[{"type": "code_interpreter"}],
model="gpt-4",
)
print(my_assistant)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myAssistant = await openai.beta.assistants.create({
instructions:
"You are a personal math tutor. When asked a question, write and run Python code to answer the question.",
name: "Math Tutor",
tools: [{ type: "code_interpreter" }],
model: "gpt-4",
});
console.log(myAssistant);
}
main();
response: &create_assistants_example |
{
"id": "asst_abc123",
"object": "assistant",
"created_at": 1698984975,
"name": "Math Tutor",
"description": null,
"model": "gpt-4",
"instructions": "You are a personal math tutor. When asked a question, write and run Python code to answer the question.",
"tools": [
{
"type": "code_interpreter"
}
],
"file_ids": [],
"metadata": {}
}
- title: Files
request:
curl: |
curl https://api.openai.com/v1/assistants \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1" \
-d '{
"instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies.",
"tools": [{"type": "retrieval"}],
"model": "gpt-4",
"file_ids": ["file-abc123"]
}'
python: |
from openai import OpenAI
client = OpenAI()
my_assistant = client.beta.assistants.create(
instructions="You are an HR bot, and you have access to files to answer employee questions about company policies.",
name="HR Helper",
tools=[{"type": "retrieval"}],
model="gpt-4",
file_ids=["file-abc123"],
)
print(my_assistant)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myAssistant = await openai.beta.assistants.create({
instructions:
"You are an HR bot, and you have access to files to answer employee questions about company policies.",
name: "HR Helper",
tools: [{ type: "retrieval" }],
model: "gpt-4",
file_ids: ["file-abc123"],
});
console.log(myAssistant);
}
main();
response: |
{
"id": "asst_abc123",
"object": "assistant",
"created_at": 1699009403,
"name": "HR Helper",
"description": null,
"model": "gpt-4",
"instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies.",
"tools": [
{
"type": "retrieval"
}
],
"file_ids": [
"file-abc123"
],
"metadata": {}
}
/assistants/{assistant_id}:
get:
operationId: getAssistant
tags:
- Assistants
summary: Retrieves an assistant.
parameters:
- in: path
name: assistant_id
required: true
schema:
type: string
description: The ID of the assistant to retrieve.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/AssistantObject"
x-oaiMeta:
name: Retrieve assistant
beta: true
returns: The [assistant](/docs/api-reference/assistants/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/assistants/asst_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1"
python: |
from openai import OpenAI
client = OpenAI()
my_assistant = client.beta.assistants.retrieve("asst_abc123")
print(my_assistant)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myAssistant = await openai.beta.assistants.retrieve(
"asst_abc123"
);
console.log(myAssistant);
}
main();
response: |
{
"id": "asst_abc123",
"object": "assistant",
"created_at": 1699009709,
"name": "HR Helper",
"description": null,
"model": "gpt-4",
"instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies.",
"tools": [
{
"type": "retrieval"
}
],
"file_ids": [
"file-abc123"
],
"metadata": {}
}
post:
operationId: modifyAssistant
tags:
- Assistant
summary: Modifies an assistant.
parameters:
- in: path
name: assistant_id
required: true
schema:
type: string
description: The ID of the assistant to modify.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/ModifyAssistantRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/AssistantObject"
x-oaiMeta:
name: Modify assistant
beta: true
returns: The modified [assistant](/docs/api-reference/assistants/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/assistants/asst_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1" \
-d '{
"instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies. Always response with info from either of the files.",
"tools": [{"type": "retrieval"}],
"model": "gpt-4",
"file_ids": ["file-abc123", "file-abc456"]
}'
python: |
from openai import OpenAI
client = OpenAI()
my_updated_assistant = client.beta.assistants.update(
"asst_abc123",
instructions="You are an HR bot, and you have access to files to answer employee questions about company policies. Always response with info from either of the files.",
name="HR Helper",
tools=[{"type": "retrieval"}],
model="gpt-4",
file_ids=["file-abc123", "file-abc456"],
)
print(my_updated_assistant)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myUpdatedAssistant = await openai.beta.assistants.update(
"asst_abc123",
{
instructions:
"You are an HR bot, and you have access to files to answer employee questions about company policies. Always response with info from either of the files.",
name: "HR Helper",
tools: [{ type: "retrieval" }],
model: "gpt-4",
file_ids: [
"file-abc123",
"file-abc456",
],
}
);
console.log(myUpdatedAssistant);
}
main();
response: |
{
"id": "asst_abc123",
"object": "assistant",
"created_at": 1699009709,
"name": "HR Helper",
"description": null,
"model": "gpt-4",
"instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies. Always response with info from either of the files.",
"tools": [
{
"type": "retrieval"
}
],
"file_ids": [
"file-abc123",
"file-abc456"
],
"metadata": {}
}
delete:
operationId: deleteAssistant
tags:
- Assistants
summary: Delete an assistant.
parameters:
- in: path
name: assistant_id
required: true
schema:
type: string
description: The ID of the assistant to delete.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/DeleteAssistantResponse"
x-oaiMeta:
name: Delete assistant
beta: true
returns: Deletion status
examples:
request:
curl: |
curl https://api.openai.com/v1/assistants/asst_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1" \
-X DELETE
python: |
from openai import OpenAI
client = OpenAI()
response = client.beta.assistants.delete("asst_QLoItBbqwyAJEzlTy4y9kOMM")
print(response)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const response = await openai.beta.assistants.del("asst_QLoItBbqwyAJEzlTy4y9kOMM");
console.log(response);
}
main();
response: |
{
"id": "asst_abc123",
"object": "assistant.deleted",
"deleted": true
}
# Threads
/threads:
post:
operationId: createThread
tags:
- Assistants
summary: Create a thread.
requestBody:
content:
application/json:
schema:
$ref: "#/components/schemas/CreateThreadRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ThreadObject"
x-oaiMeta:
name: Create thread
beta: true
returns: A [thread](/docs/api-reference/threads) object.
examples:
- title: Empty
request:
curl: |
curl https://api.openai.com/v1/threads \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1" \
-d ''
python: |
from openai import OpenAI
client = OpenAI()
empty_thread = client.beta.threads.create()
print(empty_thread)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const emptyThread = await openai.beta.threads.create();
console.log(emptyThread);
}
main();
response: |
{
"id": "thread_abc123",
"object": "thread",
"created_at": 1699012949,
"metadata": {}
}
- title: Messages
request:
curl: |
curl https://api.openai.com/v1/threads \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1" \
-d '{
"messages": [{
"role": "user",
"content": "Hello, what is AI?",
"file_ids": ["file-abc123"]
}, {
"role": "user",
"content": "How does AI work? Explain it in simple terms."
}]
}'
python: |
from openai import OpenAI
client = OpenAI()
message_thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": "Hello, what is AI?",
"file_ids": ["file-abc123"],
},
{
"role": "user",
"content": "How does AI work? Explain it in simple terms."
},
]
)
print(message_thread)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const messageThread = await openai.beta.threads.create({
messages: [
{
role: "user",
content: "Hello, what is AI?",
file_ids: ["file-abc123"],
},
{
role: "user",
content: "How does AI work? Explain it in simple terms.",
},
],
});
console.log(messageThread);
}
main();
response: |
{
id: 'thread_abc123',
object: 'thread',
created_at: 1699014083,
metadata: {}
}
/threads/{thread_id}:
get:
operationId: getThread
tags:
- Assistants
summary: Retrieves a thread.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to retrieve.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ThreadObject"
x-oaiMeta:
name: Retrieve thread
beta: true
returns: The [thread](/docs/api-reference/threads/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1"
python: |
from openai import OpenAI
client = OpenAI()
my_thread = client.beta.threads.retrieve("thread_abc123")
print(my_thread)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myThread = await openai.beta.threads.retrieve(
"thread_abc123"
);
console.log(myThread);
}
main();
response: |
{
"id": "thread_abc123",
"object": "thread",
"created_at": 1699014083,
"metadata": {}
}
post:
operationId: modifyThread
tags:
- Assistants
summary: Modifies a thread.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to modify. Only the `metadata` can be modified.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/ModifyThreadRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ThreadObject"
x-oaiMeta:
name: Modify thread
beta: true
returns: The modified [thread](/docs/api-reference/threads/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1" \
-d '{
"metadata": {
"modified": "true",
"user": "abc123"
}
}'
python: |
from openai import OpenAI
client = OpenAI()
my_updated_thread = client.beta.threads.update(
"thread_abc123",
metadata={
"modified": "true",
"user": "abc123"
}
)
print(my_updated_thread)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const updatedThread = await openai.beta.threads.update(
"thread_abc123",
{
metadata: { modified: "true", user: "abc123" },
}
);
console.log(updatedThread);
}
main();
response: |
{
"id": "thread_abc123",
"object": "thread",
"created_at": 1699014083,
"metadata": {
"modified": "true",
"user": "abc123"
}
}
delete:
operationId: deleteThread
tags:
- Assistants
summary: Delete a thread.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to delete.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/DeleteThreadResponse"
x-oaiMeta:
name: Delete thread
beta: true
returns: Deletion status
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1" \
-X DELETE
python: |
from openai import OpenAI
client = OpenAI()
response = client.beta.threads.delete("thread_abc123")
print(response)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const response = await openai.beta.threads.del("thread_abc123");
console.log(response);
}
main();
response: |
{
"id": "thread_abc123",
"object": "thread.deleted",
"deleted": true
}
/threads/{thread_id}/messages:
get:
operationId: listMessages
tags:
- Assistants
summary: Returns a list of messages for a given thread.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the [thread](/docs/api-reference/threads) the messages belong to.
- name: limit
in: query
description: *pagination_limit_param_description
required: false
schema:
type: integer
default: 20
- name: order
in: query
description: *pagination_order_param_description
schema:
type: string
default: desc
enum: ["asc", "desc"]
- name: after
in: query
description: *pagination_after_param_description
schema:
type: string
- name: before
in: query
description: *pagination_before_param_description
schema:
type: string
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListMessagesResponse"
x-oaiMeta:
name: List messages
beta: true
returns: A list of [message](/docs/api-reference/messages) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/messages \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1"
python: |
from openai import OpenAI
client = OpenAI()
thread_messages = client.beta.threads.messages.list("thread_1OWaSqVIxJdy3KYnJLbXEWhy")
print(thread_messages.data)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const threadMessages = await openai.beta.threads.messages.list(
"thread_1OWaSqVIxJdy3KYnJLbXEWhy"
);
console.log(threadMessages.data);
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "msg_abc123",
"object": "thread.message",
"created_at": 1699016383,
"thread_id": "thread_abc123",
"role": "user",
"content": [
{
"type": "text",
"text": {
"value": "How does AI work? Explain it in simple terms.",
"annotations": []
}
}
],
"file_ids": [],
"assistant_id": null,
"run_id": null,
"metadata": {}
},
{
"id": "msg_abc456",
"object": "thread.message",
"created_at": 1699016383,
"thread_id": "thread_abc123",
"role": "user",
"content": [
{
"type": "text",
"text": {
"value": "Hello, what is AI?",
"annotations": []
}
}
],
"file_ids": [
"file-abc123"
],
"assistant_id": null,
"run_id": null,
"metadata": {}
}
],
"first_id": "msg_abc123",
"last_id": "msg_abc456",
"has_more": false
}
post:
operationId: createMessage
tags:
- Assistants
summary: Create a message.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the [thread](/docs/api-reference/threads) to create a message for.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateMessageRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/MessageObject"
x-oaiMeta:
name: Create message
beta: true
returns: A [message](/docs/api-reference/messages/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/messages \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1" \
-d '{
"role": "user",
"content": "How does AI work? Explain it in simple terms."
}'
python: |
from openai import OpenAI
client = OpenAI()
thread_message = client.beta.threads.messages.create(
"thread_abc123",
role="user",
content="How does AI work? Explain it in simple terms.",
)
print(thread_message)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const threadMessages = await openai.beta.threads.messages.create(
"thread_abc123",
{ role: "user", content: "How does AI work? Explain it in simple terms." }
);
console.log(threadMessages);
}
main();
response: |
{
"id": "msg_abc123",
"object": "thread.message",
"created_at": 1699017614,
"thread_id": "thread_abc123",
"role": "user",
"content": [
{
"type": "text",
"text": {
"value": "How does AI work? Explain it in simple terms.",
"annotations": []
}
}
],
"file_ids": [],
"assistant_id": null,
"run_id": null,
"metadata": {}
}
/threads/{thread_id}/messages/{message_id}:
get:
operationId: getMessage
tags:
- Assistants
summary: Retrieve a message.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the [thread](/docs/api-reference/threads) to which this message belongs.
- in: path
name: message_id
required: true
schema:
type: string
description: The ID of the message to retrieve.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/MessageObject"
x-oaiMeta:
name: Retrieve message
beta: true
returns: The [message](/docs/api-reference/threads/messages/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/messages/msg_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1"
python: |
from openai import OpenAI
client = OpenAI()
message = client.beta.threads.messages.retrieve(
message_id="msg_abc123",
thread_id="thread_abc123",
)
print(message)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const message = await openai.beta.threads.messages.retrieve(
"thread_abc123",
"msg_abc123"
);
console.log(message);
}
main();
response: |
{
"id": "msg_abc123",
"object": "thread.message",
"created_at": 1699017614,
"thread_id": "thread_abc123",
"role": "user",
"content": [
{
"type": "text",
"text": {
"value": "How does AI work? Explain it in simple terms.",
"annotations": []
}
}
],
"file_ids": [],
"assistant_id": null,
"run_id": null,
"metadata": {}
}
post:
operationId: modifyMessage
tags:
- Assistants
summary: Modifies a message.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to which this message belongs.
- in: path
name: message_id
required: true
schema:
type: string
description: The ID of the message to modify.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/ModifyMessageRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/MessageObject"
x-oaiMeta:
name: Modify message
beta: true
returns: The modified [message](/docs/api-reference/threads/messages/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/messages/msg_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v1" \
-d '{
"metadata": {
"modified": "true",
"user": "abc123"
}
}'
python: |
from openai import OpenAI
client = OpenAI()
message = client.beta.threads.messages.update(
message_id="msg_abc12",
thread_id="thread_abc123",
metadata={
"modified": "true",
"user": "abc123",
},
)
print(message)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const message = await openai.beta.threads.messages.update(
"thread_abc123",
"msg_abc123",
{
metadata: {
modified: "true",
user: "abc123",
},
}
}'
response: |
{
"id": "msg_abc123",
"object": "thread.message",
"created_at": 1699017614,
"thread_id": "thread_abc123",
"role": "user",
"content": [
{
"type": "text",
"text": {
"value": "How does AI work? Explain it in simple terms.",
"annotations": []
}
}
],
"file_ids": [],
"assistant_id": null,
"run_id": null,
"metadata": {
"modified": "true",
"user": "abc123"
}
}
/threads/runs:
post:
operationId: createThreadAndRun
tags:
- Assistants
summary: Create a thread and run it in one request.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateThreadAndRunRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunObject"
x-oaiMeta:
name: Create thread and run
beta: true
returns: A [run](/docs/api-reference/runs/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/runs \
-H 'Authorization: Bearer $OPENAI_API_KEY' \
-H 'Content-Type: application/json' \
-H 'OpenAI-Beta: assistants=v1' \
-d '{
"assistant_id": "asst_IgmpQTah3ZfPHCVZjTqAY8Kv",
"thread": {
"messages": [
{"role": "user", "content": "Explain deep learning to a 5 year old."}
]
}
}'
python: |
from openai import OpenAI
client = OpenAI()
run = client.beta.threads.create_and_run(
assistant_id="asst_IgmpQTah3ZfPHCVZjTqAY8Kv",
thread={
"messages": [
{"role": "user", "content": "Explain deep learning to a 5 year old."}
]
}
)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const run = await openai.beta.threads.createAndRun({
assistant_id: "asst_IgmpQTah3ZfPHCVZjTqAY8Kv",
thread: {
messages: [
{ role: "user", content: "Explain deep learning to a 5 year old." },
],
},
});
console.log(run);
}
main();
response: |
{
"id": "run_3Qudf05GGhCleEg9ggwfJQih",
"object": "thread.run",
"created_at": 1699076792,
"assistant_id": "asst_IgmpQTah3ZfPHCVZjTqAY8Kv",
"thread_id": "thread_Ec3eKZcWI00WDZRC7FZci8hP",
"status": "queued",
"started_at": null,
"expires_at": 1699077392,
"cancelled_at": null,
"failed_at": null,
"completed_at": null,
"last_error": null,
"model": "gpt-4",
"instructions": "You are a helpful assistant.",
"tools": [],
"file_ids": [],
"metadata": {}
}
/threads/{thread_id}/runs:
get:
operationId: listRuns
tags:
- Assistants
summary: Returns a list of runs belonging to a thread.
parameters:
- name: thread_id
in: path
required: true
schema:
type: string
description: The ID of the thread the run belongs to.
- name: limit
in: query
description: *pagination_limit_param_description
required: false
schema:
type: integer
default: 20
- name: order
in: query
description: *pagination_order_param_description
schema:
type: string
default: desc
enum: ["asc", "desc"]
- name: after
in: query
description: *pagination_after_param_description
schema:
type: string
- name: before
in: query
description: *pagination_before_param_description
schema:
type: string
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListRunsResponse"
x-oaiMeta:
name: List runs
beta: true
returns: A list of [run](/docs/api-reference/runs/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_BDDwIqM4KgHibXX3mqmN3Lgs/runs \
-H 'Authorization: Bearer $OPENAI_API_KEY' \
-H 'Content-Type: application/json' \
-H 'OpenAI-Beta: assistants=v1'
python: |
from openai import OpenAI
client = OpenAI()
runs = client.beta.threads.runs.list(
"thread_BDDwIqM4KgHibXX3mqmN3Lgs"
)
print(runs)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const runs = await openai.beta.threads.runs.list(
"thread_BDDwIqM4KgHibXX3mqmN3Lgs"
);
console.log(runs);
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "run_5pyUEwhaPk11vCKiDneUWXXY",
"object": "thread.run",
"created_at": 1699075072,
"assistant_id": "asst_nGl00s4xa9zmVY6Fvuvz9wwQ",
"thread_id": "thread_BDDwIqM4KgHibXX3mqmN3Lgs",
"status": "completed",
"started_at": 1699075072,
"expires_at": null,
"cancelled_at": null,
"failed_at": null,
"completed_at": 1699075073,
"last_error": null,
"model": "gpt-3.5-turbo",
"instructions": null,
"tools": [
{
"type": "code_interpreter"
}
],
"file_ids": [
"file-9F1ex49ipEnKzyLUNnCA0Yzx",
"file-dEWwUbt2UGHp3v0e0DpCzemP"
],
"metadata": {}
},
{
"id": "run_UWvV94U0FQYiT2rlbBrdEVmC",
"object": "thread.run",
"created_at": 1699063290,
"assistant_id": "asst_nGl00s4xa9zmVY6Fvuvz9wwQ",
"thread_id": "thread_BDDwIqM4KgHibXX3mqmN3Lgs",
"status": "completed",
"started_at": 1699063290,
"expires_at": null,
"cancelled_at": null,
"failed_at": null,
"completed_at": 1699063291,
"last_error": null,
"model": "gpt-3.5-turbo",
"instructions": null,
"tools": [
{
"type": "code_interpreter"
}
],
"file_ids": [
"file-9F1ex49ipEnKzyLUNnCA0Yzx",
"file-dEWwUbt2UGHp3v0e0DpCzemP"
],
"metadata": {}
}
],
"first_id": "run_5pyUEwhaPk11vCKiDneUWXXY",
"last_id": "run_UWvV94U0FQYiT2rlbBrdEVmC",
"has_more": false
}
post:
operationId: createRun
tags:
- Assistants
summary: Create a run.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to run.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateRunRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunObject"
x-oaiMeta:
name: Create run
beta: true
returns: A [run](/docs/api-reference/runs/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_BDDwIqM4KgHibXX3mqmN3Lgs/runs \
-H 'Authorization: Bearer $OPENAI_API_KEY' \
-H 'Content-Type: application/json' \
-H 'OpenAI-Beta: assistants=v1' \
-d '{
"assistant_id": "asst_nGl00s4xa9zmVY6Fvuvz9wwQ"
}'
python: |
from openai import OpenAI
client = OpenAI()
run = client.beta.threads.runs.create(
thread_id="thread_BDDwIqM4KgHibXX3mqmN3Lgs",
assistant_id="asst_nGl00s4xa9zmVY6Fvuvz9wwQ"
)
print(run)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const run = await openai.beta.threads.runs.create(
"thread_BDDwIqM4KgHibXX3mqmN3Lgs",
{ assistant_id: "asst_nGl00s4xa9zmVY6Fvuvz9wwQ" }
);
console.log(run);
}
main();
response: &run_object_example |
{
"id": "run_UWvV94U0FQYiT2rlbBrdEVmC",
"object": "thread.run",
"created_at": 1699063290,
"assistant_id": "asst_nGl00s4xa9zmVY6Fvuvz9wwQ",
"thread_id": "thread_BDDwIqM4KgHibXX3mqmN3Lgs",
"status": "queued",
"started_at": 1699063290,
"expires_at": null,
"cancelled_at": null,
"failed_at": null,
"completed_at": 1699063291,
"last_error": null,
"model": "gpt-4",
"instructions": null,
"tools": [
{
"type": "code_interpreter"
}
],
"file_ids": [
"file-9F1ex49ipEnKzyLUNnCA0Yzx",
"file-dEWwUbt2UGHp3v0e0DpCzemP"
],
"metadata": {}
}
/threads/{thread_id}/runs/{run_id}:
get:
operationId: getRun
tags:
- Assistants
summary: Retrieves a run.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the [thread](/docs/api-reference/threads) that was run.
- in: path
name: run_id
required: true
schema:
type: string
description: The ID of the run to retrieve.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunObject"
x-oaiMeta:
name: Retrieve run
beta: true
returns: The [run](/docs/api-reference/runs/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_BDDwIqM4KgHibXX3mqmN3Lgs/runs/run_5pyUEwhaPk11vCKiDneUWXXY \
-H 'Authorization: Bearer $OPENAI_API_KEY' \
-H 'OpenAI-Beta: assistants=v1'
python: |
from openai import OpenAI
client = OpenAI()
run = client.beta.threads.runs.retrieve(
thread_id="thread_BDDwIqM4KgHibXX3mqmN3Lgs",
run_id="run_5pyUEwhaPk11vCKiDneUWXXY"
)
print(run)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const run = await openai.beta.threads.runs.retrieve(
"thread_BDDwIqM4KgHibXX3mqmN3Lgs",
"run_5pyUEwhaPk11vCKiDneUWXXY"
);
console.log(run);
}
main();
response: |
{
"id": "run_5pyUEwhaPk11vCKiDneUWXXY",
"object": "thread.run",
"created_at": 1699075072,
"assistant_id": "asst_nGl00s4xa9zmVY6Fvuvz9wwQ",
"thread_id": "thread_BDDwIqM4KgHibXX3mqmN3Lgs",
"status": "completed",
"started_at": 1699075072,
"expires_at": null,
"cancelled_at": null,
"failed_at": null,
"completed_at": 1699075073,
"last_error": null,
"model": "gpt-3.5-turbo",
"instructions": null,
"tools": [
{
"type": "code_interpreter"
}
],
"file_ids": [
"file-9F1ex49ipEnKzyLUNnCA0Yzx",
"file-dEWwUbt2UGHp3v0e0DpCzemP"
],
"metadata": {}
}
post:
operationId: modifyRun
tags:
- Assistants
summary: Modifies a run.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the [thread](/docs/api-reference/threads) that was run.
- in: path
name: run_id
required: true
schema:
type: string
description: The ID of the run to modify.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/ModifyRunRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunObject"
x-oaiMeta:
name: Modify run
beta: true
returns: The modified [run](/docs/api-reference/runs/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_BDDwIqM4KgHibXX3mqmN3Lgs/runs/run_5pyUEwhaPk11vCKiDneUWXXY \
-H 'Authorization: Bearer $OPENAI_API_KEY' \
-H 'Content-Type: application/json' \
-H 'OpenAI-Beta: assistants=v1' \
-d '{
"metadata": {
"user_id": "user_zmVY6FvuBDDwIqM4KgH"
}
}'
python: |
from openai import OpenAI
client = OpenAI()
run = client.beta.threads.runs.update(
thread_id="thread_BDDwIqM4KgHibXX3mqmN3Lgs",
run_id="run_5pyUEwhaPk11vCKiDneUWXXY",
metadata={"user_id": "user_zmVY6FvuBDDwIqM4KgH"},
)
print(run)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const run = await openai.beta.threads.runs.update(
"thread_BDDwIqM4KgHibXX3mqmN3Lgs",
"run_5pyUEwhaPk11vCKiDneUWXXY",
{
metadata: {
user_id: "user_zmVY6FvuBDDwIqM4KgH",
},
}
);
console.log(run);
}
main();
response: |
{
"id": "run_5pyUEwhaPk11vCKiDneUWXXY",
"object": "thread.run",
"created_at": 1699075072,
"assistant_id": "asst_nGl00s4xa9zmVY6Fvuvz9wwQ",
"thread_id": "thread_BDDwIqM4KgHibXX3mqmN3Lgs",
"status": "completed",
"started_at": 1699075072,
"expires_at": null,
"cancelled_at": null,
"failed_at": null,
"completed_at": 1699075073,
"last_error": null,
"model": "gpt-3.5-turbo",
"instructions": null,
"tools": [
{
"type": "code_interpreter"
}
],
"file_ids": [
"file-9F1ex49ipEnKzyLUNnCA0Yzx",
"file-dEWwUbt2UGHp3v0e0DpCzemP"
],
"metadata": {
"user_id": "user_zmVY6FvuBDDwIqM4KgH"
}
}
/threads/{thread_id}/runs/{run_id}/submit_tool_outputs:
post:
operationId: submitToolOuputsToRun
tags:
- Assistants
summary: |
When a run has the `status: "requires_action"` and `required_action.type` is `submit_tool_outputs`, this endpoint can be used to submit the outputs from the tool calls once they're all completed. All outputs must be submitted in a single request.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the [thread](/docs/api-reference/threads) to which this run belongs.
- in: path
name: run_id
required: true
schema:
type: string
description: The ID of the run that requires the tool output submission.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/SubmitToolOutputsRunRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunObject"
x-oaiMeta:
name: Submit tool outputs to run
beta: true
returns: The modified [run](/docs/api-reference/runs/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_EdR8UvCDJ035LFEJZMt3AxCd/runs/run_PHLyHQYIQn4F7JrSXslEYWwh/submit_tool_outputs \
-H 'Authorization: Bearer $OPENAI_API_KEY' \
-H 'Content-Type: application/json' \
-H 'OpenAI-Beta: assistants=v1' \
-d '{
"tool_outputs": [
{
"tool_call_id": "call_MbELIQcB72cq35Yzo2MRw5qs",
"output": "28C"
}
]
}'
python: |
from openai import OpenAI
client = OpenAI()
run = client.beta.threads.runs.submit_tool_outputs(
thread_id="thread_EdR8UvCDJ035LFEJZMt3AxCd",
run_id="run_PHLyHQYIQn4F7JrSXslEYWwh",
tool_outputs=[
{
"tool_call_id": "call_MbELIQcB72cq35Yzo2MRw5qs",
"output": "28C"
}
]
)
print(run)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const run = await openai.beta.threads.runs.submitToolOutputs(
"thread_EdR8UvCDJ035LFEJZMt3AxCd",
"run_PHLyHQYIQn4F7JrSXslEYWwh",
{
tool_outputs: [
{
tool_call_id: "call_MbELIQcB72cq35Yzo2MRw5qs",
output: "28C",
},
],
}
);
console.log(run);
}
main();
response: |
{
"id": "run_PHLyHQYIQn4F7JrSXslEYWwh",
"object": "thread.run",
"created_at": 1699075592,
"assistant_id": "asst_IgmpQTah3ZfPHCVZjTqAY8Kv",
"thread_id": "thread_EdR8UvCDJ035LFEJZMt3AxCd",
"status": "queued",
"started_at": 1699075592,
"expires_at": 1699076192,
"cancelled_at": null,
"failed_at": null,
"completed_at": null,
"last_error": null,
"model": "gpt-4",
"instructions": "You tell the weather.",
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Determine weather in my location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": [
"c",
"f"
]
}
},
"required": [
"location"
]
}
}
}
],
"file_ids": [],
"metadata": {}
}
/threads/{thread_id}/runs/{run_id}/cancel:
post:
operationId: cancelRun
tags:
- Assistants
summary: Cancels a run that is `in_progress`.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to which this run belongs.
- in: path
name: run_id
required: true
schema:
type: string
description: The ID of the run to cancel.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunObject"
x-oaiMeta:
name: Cancel a run
beta: true
returns: The modified [run](/docs/api-reference/runs/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_1cjnJPXj8MFiqTx58jU9TivC/runs/run_BeRGmpGt2wb1VI22ZRniOkrR/cancel \
-H 'Authorization: Bearer $OPENAI_API_KEY' \
-H 'OpenAI-Beta: assistants=v1' \
-X POST
python: |
from openai import OpenAI
client = OpenAI()
run = client.beta.threads.runs.cancel(
thread_id="thread_1cjnJPXj8MFiqTx58jU9TivC",
run_id="run_BeRGmpGt2wb1VI22ZRniOkrR"
)
print(run)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const run = await openai.beta.threads.runs.cancel(
"thread_1cjnJPXj8MFiqTx58jU9TivC",
"run_BeRGmpGt2wb1VI22ZRniOkrR"
);
console.log(run);
}
main();
response: |
{
"id": "run_BeRGmpGt2wb1VI22ZRniOkrR",
"object": "thread.run",
"created_at": 1699076126,
"assistant_id": "asst_IgmpQTah3ZfPHCVZjTqAY8Kv",
"thread_id": "thread_1cjnJPXj8MFiqTx58jU9TivC",
"status": "cancelling",
"started_at": 1699076126,
"expires_at": 1699076726,
"cancelled_at": null,
"failed_at": null,
"completed_at": null,
"last_error": null,
"model": "gpt-4",
"instructions": "You summarize books.",
"tools": [
{
"type": "retrieval"
}
],
"file_ids": [],
"metadata": {}
}
/threads/{thread_id}/runs/{run_id}/steps:
get:
operationId: listRunSteps
tags:
- Assistants
summary: Returns a list of run steps belonging to a run.
parameters:
- name: thread_id
in: path
required: true
schema:
type: string
description: The ID of the thread the run and run steps belong to.
- name: run_id
in: path
required: true
schema:
type: string
description: The ID of the run the run steps belong to.
- name: limit
in: query
description: *pagination_limit_param_description
required: false
schema:
type: integer
default: 20
- name: order
in: query
description: *pagination_order_param_description
schema:
type: string
default: desc
enum: ["asc", "desc"]
- name: after
in: query
description: *pagination_after_param_description
schema:
type: string
- name: before
in: query
description: *pagination_before_param_description
schema:
type: string
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListRunStepsResponse"
x-oaiMeta:
name: List run steps
beta: true
returns: A list of [run step](/docs/api-reference/runs/step-object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_BDDwIqM4KgHibXX3mqmN3Lgs/runs/run_UWvV94U0FQYiT2rlbBrdEVmC/steps \
-H 'Authorization: Bearer $OPENAI_API_KEY' \
-H 'Content-Type: application/json' \
-H 'OpenAI-Beta: assistants=v1'
python: |
from openai import OpenAI
client = OpenAI()
run_steps = client.beta.threads.runs.steps.list(
thread_id="thread_BDDwIqM4KgHibXX3mqmN3Lgs",
run_id="run_UWvV94U0FQYiT2rlbBrdEVmC"
)
print(run_steps)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const runStep = await openai.beta.threads.runs.steps.list(
"thread_BDDwIqM4KgHibXX3mqmN3Lgs",
"run_UWvV94U0FQYiT2rlbBrdEVmC"
);
console.log(runStep);
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "step_QyjyrsVsysd7F4K894BZHG97",
"object": "thread.run.step",
"created_at": 1699063291,
"run_id": "run_UWvV94U0FQYiT2rlbBrdEVmC",
"assistant_id": "asst_nGl00s4xa9zmVY6Fvuvz9wwQ",
"thread_id": "thread_BDDwIqM4KgHibXX3mqmN3Lgs",
"type": "message_creation",
"status": "completed",
"cancelled_at": null,
"completed_at": 1699063291,
"expired_at": null,
"failed_at": null,
"last_error": null,
"step_details": {
"type": "message_creation",
"message_creation": {
"message_id": "msg_6YmiCRmMbbE6FALYNePPHqwm"
}
}
}
],
"first_id": "step_QyjyrsVsysd7F4K894BZHG97",
"last_id": "step_QyjyrsVsysd7F4K894BZHG97",
"has_more": false
}
/threads/{thread_id}/runs/{run_id}/steps/{step_id}:
get:
operationId: getRunStep
tags:
- Assistants
summary: Retrieves a run step.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to which the run and run step belongs.
- in: path
name: run_id
required: true
schema:
type: string
description: The ID of the run to which the run step belongs.
- in: path
name: step_id
required: true
schema:
type: string
description: The ID of the run step to retrieve.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunStepObject"
x-oaiMeta:
name: Retrieve run step
beta: true
returns: The [run step](/docs/api-reference/runs/step-object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_BDDwIqM4KgHibXX3mqmN3Lgs/runs/run_UWvV94U0FQYiT2rlbBrdEVmC/steps/step_QyjyrsVsysd7F4K894BZHG97 \
-H 'Authorization: Bearer $OPENAI_API_KEY' \
-H 'Content-Type: application/json' \
-H 'OpenAI-Beta: assistants=v1'
python: |
from openai import OpenAI
client = OpenAI()
run_step = client.beta.threads.runs.steps.retrieve(
thread_id="thread_BDDwIqM4KgHibXX3mqmN3Lgs",
run_id="run_UWvV94U0FQYiT2rlbBrdEVmC",
step_id="step_QyjyrsVsysd7F4K894BZHG97"
)
print(run_step)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const runStep = await openai.beta.threads.runs.steps.retrieve(
"thread_BDDwIqM4KgHibXX3mqmN3Lgs",
"run_UWvV94U0FQYiT2rlbBrdEVmC",
"step_QyjyrsVsysd7F4K894BZHG97"
);
console.log(runStep);
}
main();
response: &run_step_object_example |
{
"id": "step_QyjyrsVsysd7F4K894BZHG97",
"object": "thread.run.step",
"created_at": 1699063291,
"run_id": "run_UWvV94U0FQYiT2rlbBrdEVmC",
"assistant_id": "asst_nGl00s4xa9zmVY6Fvuvz9wwQ",
"thread_id": "thread_BDDwIqM4KgHibXX3mqmN3Lgs",
"type": "message_creation",
"status": "completed",
"cancelled_at": null,
"completed_at": 1699063291,
"expired_at": null,
"failed_at": null,
"last_error": null,
"step_details": {
"type": "message_creation",
"message_creation": {
"message_id": "msg_6YmiCRmMbbE6FALYNePPHqwm"
}
}
}
/assistants/{assistant_id}/files:
get:
operationId: listAssistantFiles
tags:
- Assistants
summary: Returns a list of assistant files.
parameters:
- name: assistant_id
in: path
description: The ID of the assistant the file belongs to.
required: true
schema:
type: string
- name: limit
in: query
description: *pagination_limit_param_description
required: false
schema:
type: integer
default: 20
- name: order
in: query
description: *pagination_order_param_description
schema:
type: string
default: desc
enum: ["asc", "desc"]
- name: after
in: query
description: *pagination_after_param_description
schema:
type: string
- name: before
in: query
description: *pagination_before_param_description
schema:
type: string
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListAssistantFilesResponse"
x-oaiMeta:
name: List assistant files
beta: true
returns: A list of [assistant file](/docs/api-reference/assistants/file-object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/assistants/asst_DUGk5I7sK0FpKeijvrO30z9J/files \
-H 'Authorization: Bearer $OPENAI_API_KEY' \
-H 'Content-Type: application/json' \
-H 'OpenAI-Beta: assistants=v1'
python: |
from openai import OpenAI
client = OpenAI()
assistant_files = client.beta.assistants.files.list(
assistant_id="asst_DUGk5I7sK0FpKeijvrO30z9J"
)
print(assistant_files)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const assistantFiles = await openai.beta.assistants.files.list(
"asst_FBOFvAOHhwEWMghbMGseaPGQ"
);
console.log(assistantFiles);
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "file-dEWwUbt2UGHp3v0e0DpCzemP",
"object": "assistant.file",
"created_at": 1699060412,
"assistant_id": "asst_DUGk5I7sK0FpKeijvrO30z9J"
},
{
"id": "file-9F1ex49ipEnKzyLUNnCA0Yzx",
"object": "assistant.file",
"created_at": 1699060412,
"assistant_id": "asst_DUGk5I7sK0FpKeijvrO30z9J"
}
],
"first_id": "file-dEWwUbt2UGHp3v0e0DpCzemP",
"last_id": "file-9F1ex49ipEnKzyLUNnCA0Yzx",
"has_more": false
}
post:
operationId: createAssistantFile
tags:
- Assistants
summary: Create an assistant file by attaching a [File](/docs/api-reference/files) to an [assistant](/docs/api-reference/assistants).
parameters:
- in: path
name: assistant_id
required: true
schema:
type: string
example: file-AF1WoRqd3aJAHsqc9NY7iL8F
description: |
The ID of the assistant for which to create a File.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateAssistantFileRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/AssistantFileObject"
x-oaiMeta:
name: Create assistant file
beta: true
returns: An [assistant file](/docs/api-reference/assistants/file-object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/assistants/asst_FBOFvAOHhwEWMghbMGseaPGQ/files \
-H 'Authorization: Bearer $OPENAI_API_KEY"' \
-H 'Content-Type: application/json' \
-H 'OpenAI-Beta: assistants=v1' \
-d '{
"file_id": "file-wB6RM6wHdA49HfS2DJ9fEyrH"
}'
python: |
from openai import OpenAI
client = OpenAI()
assistant_file = client.beta.assistants.files.create(
assistant_id="asst_FBOFvAOHhwEWMghbMGseaPGQ",
file_id="file-wB6RM6wHdA49HfS2DJ9fEyrH"
)
print(assistant_file)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myAssistantFile = await openai.beta.assistants.files.create(
"asst_FBOFvAOHhwEWMghbMGseaPGQ",
{
file_id: "file-wB6RM6wHdA49HfS2DJ9fEyrH"
}
);
console.log(myAssistantFile);
}
main();
response: &assistant_file_object |
{
"id": "file-wB6RM6wHdA49HfS2DJ9fEyrH",
"object": "assistant.file",
"created_at": 1699055364,
"assistant_id": "asst_FBOFvAOHhwEWMghbMGseaPGQ"
}
/assistants/{assistant_id}/files/{file_id}:
get:
operationId: getAssistantFile
tags:
- Assistants
summary: Retrieves an AssistantFile.
parameters:
- in: path
name: assistant_id
required: true
schema:
type: string
description: The ID of the assistant who the file belongs to.
- in: path
name: file_id
required: true
schema:
type: string
description: The ID of the file we're getting.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/AssistantFileObject"
x-oaiMeta:
name: Retrieve assistant file
beta: true
returns: The [assistant file](/docs/api-reference/assistants/file-object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/assistants/asst_FBOFvAOHhwEWMghbMGseaPGQ/files/file-wB6RM6wHdA49HfS2DJ9fEyrH \
-H 'Authorization: Bearer $OPENAI_API_KEY"' \
-H 'Content-Type: application/json' \
-H 'OpenAI-Beta: assistants=v1'
python: |
from openai import OpenAI
client = OpenAI()
assistant_file = client.beta.assistants.files.retrieve(
assistant_id="asst_FBOFvAOHhwEWMghbMGseaPGQ",
file_id="file-wB6RM6wHdA49HfS2DJ9fEyrH"
)
print(assistant_file)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myAssistantFile = await openai.beta.assistants.files.retrieve(
"asst_FBOFvAOHhwEWMghbMGseaPGQ",
"file-wB6RM6wHdA49HfS2DJ9fEyrH"
);
console.log(myAssistantFile);
}
main();
response: *assistant_file_object
delete:
operationId: deleteAssistantFile
tags:
- Assistants
summary: Delete an assistant file.
parameters:
- in: path
name: assistant_id
required: true
schema:
type: string
description: The ID of the assistant that the file belongs to.
- in: path
name: file_id
required: true
schema:
type: string
description: The ID of the file to delete.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/DeleteAssistantFileResponse"
x-oaiMeta:
name: Delete assistant file
beta: true
returns: Deletion status
examples:
request:
curl: |
curl https://api.openai.com/v1/assistants/asst_DUGk5I7sK0FpKeijvrO30z9J/files/file-9F1ex49ipEnKzyLUNnCA0Yzx \
-H 'Authorization: Bearer $OPENAI_API_KEY' \
-H 'Content-Type: application/json' \
-H 'OpenAI-Beta: assistants=v1' \
-X DELETE
python: |
from openai import OpenAI
client = OpenAI()
deleted_assistant_file = client.beta.assistants.files.delete(
assistant_id="asst_DUGk5I7sK0FpKeijvrO30z9J",
file_id="file-dEWwUbt2UGHp3v0e0DpCzemP"
)
print(deleted_assistant_file)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const deletedAssistantFile = await openai.beta.assistants.files.del(
"asst_FBOFvAOHhwEWMghbMGseaPGQ",
"file-wB6RM6wHdA49HfS2DJ9fEyrH"
);
console.log(deletedAssistantFile);
}
main();
response: |
{
id: "file-BK7bzQj3FfZFXr7DbL6xJwfo",
object: "assistant.file.deleted",
deleted: true
}
/threads/{thread_id}/messages/{message_id}/files:
get:
operationId: listMessageFiles
tags:
- Assistants
summary: Returns a list of message files.
parameters:
- name: thread_id
in: path
description: The ID of the thread that the message and files belong to.
required: true
schema:
type: string
- name: message_id
in: path
description: The ID of the message that the files belongs to.
required: true
schema:
type: string
- name: limit
in: query
description: *pagination_limit_param_description
required: false
schema:
type: integer
default: 20
- name: order
in: query
description: *pagination_order_param_description
schema:
type: string
default: desc
enum: ["asc", "desc"]
- name: after
in: query
description: *pagination_after_param_description
schema:
type: string
- name: before
in: query
description: *pagination_before_param_description
schema:
type: string
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListMessageFilesResponse"
x-oaiMeta:
name: List message files
beta: true
returns: A list of [message file](/docs/api-reference/messages/file-object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_RGUhOuO9b2nrktrmsQ2uSR6I/messages/msg_q3XhbGmMzsqEFa81gMLBDAVU/files \
-H 'Authorization: Bearer $OPENAI_API_KEY' \
-H 'Content-Type: application/json' \
-H 'OpenAI-Beta: assistants=v1'
python: |
from openai import OpenAI
client = OpenAI()
message_files = client.beta.threads.messages.files.list(
thread_id="thread_RGUhOuO9b2nrktrmsQ2uSR6I",
message_id="msg_q3XhbGmMzsqEFa81gMLBDAVU"
)
print(message_files)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const messageFiles = await openai.beta.threads.messages.files.list(
"thread_RGUhOuO9b2nrktrmsQ2uSR6I",
"msg_q3XhbGmMzsqEFa81gMLBDAVU"
);
console.log(messageFiles);
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "file-dEWwUbt2UGHp3v0e0DpCzemP",
"object": "thread.message.file",
"created_at": 1699061776,
"message_id": "msg_q3XhbGmMzsqEFa81gMLBDAVU"
},
{
"id": "file-dEWwUbt2UGHp3v0e0DpCzemP",
"object": "thread.message.file",
"created_at": 1699061776,
"message_id": "msg_q3XhbGmMzsqEFa81gMLBDAVU"
}
],
"first_id": "file-dEWwUbt2UGHp3v0e0DpCzemP",
"last_id": "file-dEWwUbt2UGHp3v0e0DpCzemP",
"has_more": false
}
/threads/{thread_id}/messages/{message_id}/files/{file_id}:
get:
operationId: getMessageFile
tags:
- Assistants
summary: Retrieves a message file.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
example: thread_AF1WoRqd3aJAHsqc9NY7iL8F
description: The ID of the thread to which the message and File belong.
- in: path
name: message_id
required: true
schema:
type: string
example: msg_AF1WoRqd3aJAHsqc9NY7iL8F
description: The ID of the message the file belongs to.
- in: path
name: file_id
required: true
schema:
type: string
example: file-AF1WoRqd3aJAHsqc9NY7iL8F
description: The ID of the file being retrieved.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/MessageFileObject"
x-oaiMeta:
name: Retrieve message file
beta: true
returns: The [message file](/docs/api-reference/messages/file-object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_RGUhOuO9b2nrktrmsQ2uSR6I/messages/msg_q3XhbGmMzsqEFa81gMLBDAVU/files/file-dEWwUbt2UGHp3v0e0DpCzemP \
-H 'Authorization: Bearer $OPENAI_API_KEY' \
-H 'Content-Type: application/json' \
-H 'OpenAI-Beta: assistants=v1'
python: |
from openai import OpenAI
client = OpenAI()
message_files = client.beta.threads.messages.files.retrieve(
thread_id="thread_RGUhOuO9b2nrktrmsQ2uSR6I",
message_id="msg_q3XhbGmMzsqEFa81gMLBDAVU",
file_id="file-dEWwUbt2UGHp3v0e0DpCzemP"
)
print(message_files)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const messageFile = await openai.beta.threads.messages.files.retrieve(
"thread_RGUhOuO9b2nrktrmsQ2uSR6I",
"msg_q3XhbGmMzsqEFa81gMLBDAVU",
"file-dEWwUbt2UGHp3v0e0DpCzemP"
);
console.log(messageFile);
}
main();
response: |
{
"id": "file-dEWwUbt2UGHp3v0e0DpCzemP",
"object": "thread.message.file",
"created_at": 1699061776,
"message_id": "msg_q3XhbGmMzsqEFa81gMLBDAVU"
}
components:
securitySchemes:
ApiKeyAuth:
type: http
scheme: "bearer"
schemas:
Error:
type: object
properties:
code:
type: string
nullable: true
message:
type: string
nullable: false
param:
type: string
nullable: true
type:
type: string
nullable: false
required:
- type
- message
- param
- code
ErrorResponse:
type: object
properties:
error:
$ref: "#/components/schemas/Error"
required:
- error
ListModelsResponse:
type: object
properties:
object:
type: string
enum: [list]
data:
type: array
items:
$ref: "#/components/schemas/Model"
required:
- object
- data
DeleteModelResponse:
type: object
properties:
id:
type: string
deleted:
type: boolean
object:
type: string
required:
- id
- object
- deleted
CreateCompletionRequest:
type: object
properties:
model:
description: &model_description |
ID of the model to use. You can use the [List models](/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](/docs/models/overview) for descriptions of them.
anyOf:
- type: string
- type: string
enum:
[
"babbage-002",
"davinci-002",
"gpt-3.5-turbo-instruct",
"text-davinci-003",
"text-davinci-002",
"text-davinci-001",
"code-davinci-002",
"text-curie-001",
"text-babbage-001",
"text-ada-001",
]
x-oaiTypeLabel: string
prompt:
description: &completions_prompt_description |
The prompt(s) to generate completions for, encoded as a string, array of strings, array of tokens, or array of token arrays.
Note that <|endoftext|> is the document separator that the model sees during training, so if a prompt is not specified the model will generate as if from the beginning of a new document.
default: "<|endoftext|>"
nullable: true
oneOf:
- type: string
default: ""
example: "This is a test."
- type: array
items:
type: string
default: ""
example: "This is a test."
- type: array
minItems: 1
items:
type: integer
example: "[1212, 318, 257, 1332, 13]"
- type: array
minItems: 1
items:
type: array
minItems: 1
items:
type: integer
example: "[[1212, 318, 257, 1332, 13]]"
best_of:
type: integer
default: 1
minimum: 0
maximum: 20
nullable: true
description: &completions_best_of_description |
Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token). Results cannot be streamed.
When used with `n`, `best_of` controls the number of candidate completions and `n` specifies how many to return `best_of` must be greater than `n`.
**Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
echo:
type: boolean
default: false
nullable: true
description: &completions_echo_description >
Echo back the prompt in addition to the completion
frequency_penalty:
type: number
default: 0
minimum: -2
maximum: 2
nullable: true
description: &completions_frequency_penalty_description |
Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
[See more information about frequency and presence penalties.](/docs/guides/gpt/parameter-details)
logit_bias: &completions_logit_bias
type: object
x-oaiTypeLabel: map
default: null
nullable: true
additionalProperties:
type: integer
description: &completions_logit_bias_description |
Modify the likelihood of specified tokens appearing in the completion.
Accepts a JSON object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this [tokenizer tool](/tokenizer?view=bpe) (which works for both GPT-2 and GPT-3) to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token from being generated.
logprobs: &completions_logprobs_configuration
type: integer
minimum: 0
maximum: 5
default: null
nullable: true
description: &completions_logprobs_description |
Include the log probabilities on the `logprobs` most likely tokens, as well the chosen tokens. For example, if `logprobs` is 5, the API will return a list of the 5 most likely tokens. The API will always return the `logprob` of the sampled token, so there may be up to `logprobs+1` elements in the response.
The maximum value for `logprobs` is 5.
max_tokens:
type: integer
minimum: 0
default: 16
example: 16
nullable: true
description: &completions_max_tokens_description |
The maximum number of [tokens](/tokenizer) to generate in the completion.
The token count of your prompt plus `max_tokens` cannot exceed the model's context length. [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens.
n:
type: integer
minimum: 1
maximum: 128
default: 1
example: 1
nullable: true
description: &completions_completions_description |
How many completions to generate for each prompt.
**Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
presence_penalty:
type: number
default: 0
minimum: -2
maximum: 2
nullable: true
description: &completions_presence_penalty_description |
Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
[See more information about frequency and presence penalties.](/docs/guides/gpt/parameter-details)
seed: &completions_seed_param
type: integer
minimum: -9223372036854775808
maximum: 9223372036854775807
nullable: true
description: |
If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same `seed` and parameters should return the same result.
Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend.
stop:
description: &completions_stop_description >
Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence.
default: null
nullable: true
oneOf:
- type: string
default: <|endoftext|>
example: "\n"
nullable: true
- type: array
minItems: 1
maxItems: 4
items:
type: string
example: '["\n"]'
stream:
description: >
Whether to stream back partial progress. If set, tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
as they become available, with the stream terminated by a `data: [DONE]` message. [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
type: boolean
nullable: true
default: false
suffix:
description: The suffix that comes after a completion of inserted text.
default: null
nullable: true
type: string
example: "test."
temperature:
type: number
minimum: 0
maximum: 2
default: 1
example: 1
nullable: true
description: &completions_temperature_description |
What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
We generally recommend altering this or `top_p` but not both.
top_p:
type: number
minimum: 0
maximum: 1
default: 1
example: 1
nullable: true
description: &completions_top_p_description |
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or `temperature` but not both.
user: &end_user_param_configuration
type: string
example: user-1234
description: |
A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](/docs/guides/safety-best-practices/end-user-ids).
required:
- model
- prompt
CreateCompletionResponse:
type: object
description: |
Represents a completion response from the API. Note: both the streamed and non-streamed response objects share the same shape (unlike the chat endpoint).
properties:
id:
type: string
description: A unique identifier for the completion.
choices:
type: array
description: The list of completion choices the model generated for the input prompt.
items:
type: object
required:
- finish_reason
- index
- logprobs
- text
properties:
finish_reason:
type: string
description: &completion_finish_reason_description |
The reason the model stopped generating tokens. This will be `stop` if the model hit a natural stop point or a provided stop sequence,
`length` if the maximum number of tokens specified in the request was reached,
or `content_filter` if content was omitted due to a flag from our content filters.
enum: ["stop", "length", "content_filter"]
index:
type: integer
logprobs:
type: object
nullable: true
properties:
text_offset:
type: array
items:
type: integer
token_logprobs:
type: array
items:
type: number
tokens:
type: array
items:
type: string
top_logprobs:
type: array
items:
type: object
additionalProperties:
type: number
text:
type: string
created:
type: integer
description: The Unix timestamp (in seconds) of when the completion was created.
model:
type: string
description: The model used for completion.
system_fingerprint:
type: string
description: |
This fingerprint represents the backend configuration that the model runs with.
Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism.
object:
type: string
description: The object type, which is always "text_completion"
enum: [text_completion]
usage:
$ref: "#/components/schemas/CompletionUsage"
required:
- id
- object
- created
- model
- choices
x-oaiMeta:
name: The completion object
legacy: true
example: |
{
"id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7",
"object": "text_completion",
"created": 1589478378,
"model": "gpt-3.5-turbo",
"choices": [
{
"text": "\n\nThis is indeed a test",
"index": 0,
"logprobs": null,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": 5,
"completion_tokens": 7,
"total_tokens": 12
}
}
ChatCompletionRequestMessageContentPart:
oneOf:
- $ref: "#/components/schemas/ChatCompletionRequestMessageContentPartText"
- $ref: "#/components/schemas/ChatCompletionRequestMessageContentPartImage"
x-oaiExpandable: true
ChatCompletionRequestMessageContentPartImage:
type: object
title: Image content part
properties:
type:
type: string
enum: ["image_url"]
description: The type of the content part.
image_url:
type: object
properties:
url:
type: string
description: Either a URL of the image or the base64 encoded image data.
format: uri
detail:
type: string
description: Specifies the detail level of the image.
enum: ["auto", "low", "high"]
default: "auto"
required:
- url
required:
- type
- image_url
ChatCompletionRequestMessageContentPartText:
type: object
title: Text content part
properties:
type:
type: string
enum: ["text"]
description: The type of the content part.
text:
type: string
description: The text content.
required:
- type
- text
ChatCompletionRequestMessage:
oneOf:
- $ref: "#/components/schemas/ChatCompletionRequestSystemMessage"
- $ref: "#/components/schemas/ChatCompletionRequestUserMessage"
- $ref: "#/components/schemas/ChatCompletionRequestAssistantMessage"
- $ref: "#/components/schemas/ChatCompletionRequestToolMessage"
- $ref: "#/components/schemas/ChatCompletionRequestFunctionMessage"
x-oaiExpandable: true
ChatCompletionRequestSystemMessage:
type: object
title: System message
properties:
content:
nullable: true
description: The contents of the system message.
type: string
role:
type: string
enum: ["system"]
description: The role of the messages author, in this case `system`.
required:
- content
- role
ChatCompletionRequestUserMessage:
type: object
title: User message
properties:
content:
nullable: true
description: |
The contents of the user message.
oneOf:
- type: string
description: The text contents of the message.
title: Text content
- type: array
description: An array of content parts with a defined type, each can be of type `text` or `image_url` when passing in images. You can pass multiple images by adding multiple `image_url` content parts. Image input is only supported when using the `gpt-4-visual-preview` model.
title: Array of content parts
items:
$ref: "#/components/schemas/ChatCompletionRequestMessageContentPart"
minItems: 1
role:
type: string
enum: ["user"]
description: The role of the messages author, in this case `user`.
required:
- content
- role
ChatCompletionRequestAssistantMessage:
type: object
title: Assistant message
properties:
content:
nullable: true
type: string
description: |
The contents of the assistant message.
role:
type: string
enum: ["assistant"]
description: The role of the messages author, in this case `assistant`.
tool_calls:
$ref: "#/components/schemas/ChatCompletionMessageToolCalls"
function_call:
type: object
deprecated: true
description: "Deprecated and replaced by `tool_calls`. The name and arguments of a function that should be called, as generated by the model."
properties:
arguments:
type: string
description: The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
name:
type: string
description: The name of the function to call.
required:
- arguments
- name
required:
- content
- role
ChatCompletionRequestToolMessage:
type: object
title: Tool message
properties:
role:
type: string
enum: ["tool"]
description: The role of the messages author, in this case `tool`.
content:
nullable: true
type: string
description: The contents of the tool message.
tool_call_id:
type: string
description: Tool call that this message is responding to.
required:
- role
- content
- tool_call_id
ChatCompletionRequestFunctionMessage:
type: object
title: Function message
deprecated: true
properties:
role:
type: string
enum: ["function"]
description: The role of the messages author, in this case `function`.
content:
type: string
nullable: true
description: The return value from the function call, to return to the model.
name:
type: string
description: The name of the function to call.
required:
- role
- name
- content
FunctionParameters:
type: object
description: "The parameters the functions accepts, described as a JSON Schema object. See the [guide](/docs/guides/gpt/function-calling) for examples, and the [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for documentation about the format.\n\nTo describe a function that accepts no parameters, provide the value `{\"type\": \"object\", \"properties\": {}}`."
additionalProperties: true
ChatCompletionFunctions:
type: object
deprecated: true
properties:
description:
type: string
description: A description of what the function does, used by the model to choose when and how to call the function.
name:
type: string
description: The name of the function to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64.
parameters:
$ref: "#/components/schemas/FunctionParameters"
required:
- name
- parameters
ChatCompletionFunctionCallOption:
type: object
description: >
Specifying a particular function via `{"name": "my_function"}` forces the model to call that function.
properties:
name:
type: string
description: The name of the function to call.
required:
- name
ChatCompletionTool:
type: object
properties:
type:
type: string
enum: ["function"]
description: The type of the tool. Currently, only `function` is supported.
function:
$ref: "#/components/schemas/FunctionObject"
required:
- type
- function
FunctionObject:
type: object
properties:
description:
type: string
description: A description of what the function does, used by the model to choose when and how to call the function.
name:
type: string
description: The name of the function to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64.
parameters:
$ref: "#/components/schemas/FunctionParameters"
required:
- name
- parameters
ChatCompletionToolChoiceOption:
description: |
Controls which (if any) function is called by the model.
`none` means the model will not call a function and instead generates a message.
`auto` means the model can pick between generating a message or calling a function.
Specifying a particular function via `{"type: "function", "function": {"name": "my_function"}}` forces the model to call that function.
`none` is the default when no functions are present. `auto` is the default if functions are present.
oneOf:
- type: string
description: >
`none` means the model will not call a function and instead generates a message.
`auto` means the model can pick between generating a message or calling a function.
enum: [none, auto]
- $ref: "#/components/schemas/ChatCompletionNamedToolChoice"
x-oaiExpandable: true
ChatCompletionNamedToolChoice:
type: object
description: Specifies a tool the model should use. Use to force the model to call a specific function.
properties:
type:
type: string
enum: ["function"]
description: The type of the tool. Currently, only `function` is supported.
function:
type: object
properties:
name:
type: string
description: The name of the function to call.
required:
- name
ChatCompletionMessageToolCalls:
type: array
description: The tool calls generated by the model, such as function calls.
items:
$ref: "#/components/schemas/ChatCompletionMessageToolCall"
ChatCompletionMessageToolCall:
type: object
properties:
# TODO: index included when streaming
id:
type: string
description: The ID of the tool call.
type:
type: string
enum: ["function"]
description: The type of the tool. Currently, only `function` is supported.
function:
type: object
description: The function that the model called.
properties:
name:
type: string
description: The name of the function to call.
arguments:
type: string
description: The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
required:
- name
- arguments
required:
- id
- type
- function
ChatCompletionMessageToolCallChunk:
type: object
properties:
index:
type: integer
id:
type: string
description: The ID of the tool call.
type:
type: string
enum: ["function"]
description: The type of the tool. Currently, only `function` is supported.
function:
type: object
properties:
name:
type: string
description: The name of the function to call.
arguments:
type: string
description: The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
required:
- index
# Note, this isn't referenced anywhere, but is kept as a convenience to record all possible roles in one place.
ChatCompletionRole:
type: string
description: The role of the author of a message
enum:
- system
- user
- assistant
- tool
- function
ChatCompletionResponseMessage:
type: object
description: A chat completion message generated by the model.
properties:
content:
type: string
description: The contents of the message.
nullable: true
tool_calls:
$ref: "#/components/schemas/ChatCompletionMessageToolCalls"
role:
type: string
enum: ["assistant"]
description: The role of the author of this message.
function_call:
type: object
deprecated: true
description: "Deprecated and replaced by `tool_calls`. The name and arguments of a function that should be called, as generated by the model."
properties:
arguments:
type: string
description: The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
name:
type: string
description: The name of the function to call.
required:
- name
- arguments
required:
- role
- content
ChatCompletionStreamResponseDelta:
type: object
description: A chat completion delta generated by streamed model responses.
properties:
content:
type: string
description: The contents of the chunk message.
nullable: true
function_call:
deprecated: true
type: object
description: "Deprecated and replaced by `tool_calls`. The name and arguments of a function that should be called, as generated by the model."
properties:
arguments:
type: string
description: The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
name:
type: string
description: The name of the function to call.
tool_calls:
type: array
items:
$ref: "#/components/schemas/ChatCompletionMessageToolCallChunk"
role:
type: string
enum: ["system", "user", "assistant", "tool"]
description: The role of the author of this message.
CreateChatCompletionRequest:
type: object
properties:
messages:
description: A list of messages comprising the conversation so far. [Example Python code](https://cookbook.openai.com/examples/how_to_format_inputs_to_chatgpt_models).
type: array
minItems: 1
items:
$ref: "#/components/schemas/ChatCompletionRequestMessage"
model:
description: ID of the model to use. See the [model endpoint compatibility](/docs/models/model-endpoint-compatibility) table for details on which models work with the Chat API.
example: "gpt-3.5-turbo"
anyOf:
- type: string
- type: string
enum:
[
"gpt-4-1106-preview",
"gpt-4-vision-preview",
"gpt-4",
"gpt-4-0314",
"gpt-4-0613",
"gpt-4-32k",
"gpt-4-32k-0314",
"gpt-4-32k-0613",
"gpt-3.5-turbo-1106",
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-0301",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
]
x-oaiTypeLabel: string
frequency_penalty:
type: number
default: 0
minimum: -2
maximum: 2
nullable: true
description: *completions_frequency_penalty_description
logit_bias:
type: object
x-oaiTypeLabel: map
default: null
nullable: true
additionalProperties:
type: integer
description: |
Modify the likelihood of specified tokens appearing in the completion.
Accepts a JSON object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
max_tokens:
description: |
The maximum number of [tokens](/tokenizer) to generate in the chat completion.
The total length of input tokens and generated tokens is limited by the model's context length. [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens.
default: inf
type: integer
nullable: true
n:
type: integer
minimum: 1
maximum: 128
default: 1
example: 1
nullable: true
description: How many chat completion choices to generate for each input message.
presence_penalty:
type: number
default: 0
minimum: -2
maximum: 2
nullable: true
description: *completions_presence_penalty_description
response_format:
type: object
description: |
An object specifying the format that the model must output.
Setting to `{ "type": "json_object" }` enables JSON mode, which guarantees the message the model generates is valid JSON.
**Important:** when using JSON mode, you **must** also instruct the model to produce JSON yourself via a system or user message. Without this, the model may generate an unending stream of whitespace until the generation reaches the token limit, resulting in increased latency and appearance of a "stuck" request. Also note that the message content may be partially cut off if `finish_reason="length"`, which indicates the generation exceeded `max_tokens` or the conversation exceeded the max context length.
properties:
type:
type: string
enum: ["text", "json_object"]
example: "json_object"
default: "text"
description: Must be one of `text` or `json_object`.
seed:
type: integer
minimum: -9223372036854775808
maximum: 9223372036854775807
nullable: true
description: |
This feature is in Beta.
If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same `seed` and parameters should return the same result.
Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend.
x-oaiMeta:
beta: true
stop:
description: |
Up to 4 sequences where the API will stop generating further tokens.
default: null
oneOf:
- type: string
nullable: true
- type: array
minItems: 1
maxItems: 4
items:
type: string
stream:
description: >
If set, partial message deltas will be sent, like in ChatGPT. Tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
as they become available, with the stream terminated by a `data: [DONE]` message. [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
type: boolean
nullable: true
default: false
temperature:
type: number
minimum: 0
maximum: 2
default: 1
example: 1
nullable: true
description: *completions_temperature_description
top_p:
type: number
minimum: 0
maximum: 1
default: 1
example: 1
nullable: true
description: *completions_top_p_description
tools:
type: array
description: >
A list of tools the model may call. Currently, only functions are supported as a tool.
Use this to provide a list of functions the model may generate JSON inputs for.
items:
$ref: "#/components/schemas/ChatCompletionTool"
tool_choice:
$ref: "#/components/schemas/ChatCompletionToolChoiceOption"
user: *end_user_param_configuration
function_call:
deprecated: true
description: |
Deprecated in favor of `tool_choice`.
Controls which (if any) function is called by the model.
`none` means the model will not call a function and instead generates a message.
`auto` means the model can pick between generating a message or calling a function.
Specifying a particular function via `{"name": "my_function"}` forces the model to call that function.
`none` is the default when no functions are present. `auto`` is the default if functions are present.
oneOf:
- type: string
description: >
`none` means the model will not call a function and instead generates a message.
`auto` means the model can pick between generating a message or calling a function.
enum: [none, auto]
- $ref: "#/components/schemas/ChatCompletionFunctionCallOption"
x-oaiExpandable: true
functions:
deprecated: true
description: |
Deprecated in favor of `tools`.
A list of functions the model may generate JSON inputs for.
type: array
minItems: 1
maxItems: 128
items:
$ref: "#/components/schemas/ChatCompletionFunctions"
required:
- model
- messages
CreateChatCompletionResponse:
type: object
description: Represents a chat completion response returned by model, based on the provided input.
properties:
id:
type: string
description: A unique identifier for the chat completion.
choices:
type: array
description: A list of chat completion choices. Can be more than one if `n` is greater than 1.
items:
type: object
required:
- finish_reason
- index
- message
properties:
finish_reason:
type: string
description: &chat_completion_finish_reason_description |
The reason the model stopped generating tokens. This will be `stop` if the model hit a natural stop point or a provided stop sequence,
`length` if the maximum number of tokens specified in the request was reached,
`content_filter` if content was omitted due to a flag from our content filters,
`tool_calls` if the model called a tool, or `function_call` (deprecated) if the model called a function.
enum:
[
"stop",
"length",
"tool_calls",
"content_filter",
"function_call",
]
index:
type: integer
description: The index of the choice in the list of choices.
message:
$ref: "#/components/schemas/ChatCompletionResponseMessage"
created:
type: integer
description: The Unix timestamp (in seconds) of when the chat completion was created.
model:
type: string
description: The model used for the chat completion.
system_fingerprint:
type: string
description: |
This fingerprint represents the backend configuration that the model runs with.
Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism.
object:
type: string
description: The object type, which is always `chat.completion`.
enum: [chat.completion]
usage:
$ref: "#/components/schemas/CompletionUsage"
required:
- choices
- created
- id
- model
- object
x-oaiMeta:
name: The chat completion object
group: chat
example: *chat_completion_example
CreateChatCompletionFunctionResponse:
type: object
description: Represents a chat completion response returned by model, based on the provided input.
properties:
id:
type: string
description: A unique identifier for the chat completion.
choices:
type: array
description: A list of chat completion choices. Can be more than one if `n` is greater than 1.
items:
type: object
required:
- finish_reason
- index
- message
properties:
finish_reason:
type: string
description:
&chat_completion_function_finish_reason_description |
The reason the model stopped generating tokens. This will be `stop` if the model hit a natural stop point or a provided stop sequence, `length` if the maximum number of tokens specified in the request was reached, `content_filter` if content was omitted due to a flag from our content filters, or `function_call` if the model called a function.
enum: ["stop", "length", "function_call", "content_filter"]
index:
type: integer
description: The index of the choice in the list of choices.
message:
$ref: "#/components/schemas/ChatCompletionResponseMessage"
created:
type: integer
description: The Unix timestamp (in seconds) of when the chat completion was created.
model:
type: string
description: The model used for the chat completion.
system_fingerprint:
type: string
description: |
This fingerprint represents the backend configuration that the model runs with.
Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism.
object:
type: string
description: The object type, which is always `chat.completion`.
enum: [chat.completion]
usage:
$ref: "#/components/schemas/CompletionUsage"
required:
- choices
- created
- id
- model
- object
x-oaiMeta:
name: The chat completion object
group: chat
example: *chat_completion_function_example
ListPaginatedFineTuningJobsResponse:
type: object
properties:
data:
type: array
items:
$ref: "#/components/schemas/FineTuningJob"
has_more:
type: boolean
object:
type: string
enum: [list]
required:
- object
- data
- has_more
CreateChatCompletionStreamResponse:
type: object
description: Represents a streamed chunk of a chat completion response returned by model, based on the provided input.
properties:
id:
type: string
description: A unique identifier for the chat completion. Each chunk has the same ID.
choices:
type: array
description: A list of chat completion choices. Can be more than one if `n` is greater than 1.
items:
type: object
required:
- delta
- finish_reason
- index
properties:
delta:
$ref: "#/components/schemas/ChatCompletionStreamResponseDelta"
finish_reason:
type: string
description: *chat_completion_finish_reason_description
enum:
[
"stop",
"length",
"tool_calls",
"content_filter",
"function_call",
]
nullable: true
index:
type: integer
description: The index of the choice in the list of choices.
created:
type: integer
description: The Unix timestamp (in seconds) of when the chat completion was created. Each chunk has the same timestamp.
model:
type: string
description: The model to generate the completion.
system_fingerprint:
type: string
description: |
This fingerprint represents the backend configuration that the model runs with.
Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism.
object:
type: string
description: The object type, which is always `chat.completion.chunk`.
enum: [chat.completion.chunk]
required:
- choices
- created
- id
- model
- object
x-oaiMeta:
name: The chat completion chunk object
group: chat
example: *chat_completion_chunk_example
CreateChatCompletionImageResponse:
type: object
description: Represents a streamed chunk of a chat completion response returned by model, based on the provided input.
x-oaiMeta:
name: The chat completion chunk object
group: chat
example: *chat_completion_image_example
CreateEditRequest:
type: object
properties:
instruction:
description: The instruction that tells the model how to edit the prompt.
type: string
example: "Fix the spelling mistakes."
model:
description: ID of the model to use. You can use the `text-davinci-edit-001` or `code-davinci-edit-001` model with this endpoint.
example: "text-davinci-edit-001"
anyOf:
- type: string
- type: string
enum: ["text-davinci-edit-001", "code-davinci-edit-001"]
x-oaiTypeLabel: string
input:
description: The input text to use as a starting point for the edit.
type: string
default: ""
nullable: true
example: "What day of the wek is it?"
n:
type: integer
minimum: 1
maximum: 20
default: 1
example: 1
nullable: true
description: How many edits to generate for the input and instruction.
temperature:
type: number
minimum: 0
maximum: 2
default: 1
example: 1
nullable: true
description: *completions_temperature_description
top_p:
type: number
minimum: 0
maximum: 1
default: 1
example: 1
nullable: true
description: *completions_top_p_description
required:
- model
- instruction
CreateEditResponse:
type: object
title: Edit
deprecated: true
properties:
choices:
type: array
description: A list of edit choices. Can be more than one if `n` is greater than 1.
items:
type: object
required:
- text
- index
- finish_reason
properties:
finish_reason:
type: string
description: *completion_finish_reason_description
enum: ["stop", "length"]
index:
type: integer
description: The index of the choice in the list of choices.
text:
type: string
description: The edited result.
object:
type: string
description: The object type, which is always `edit`.
enum: [edit]
created:
type: integer
description: The Unix timestamp (in seconds) of when the edit was created.
usage:
$ref: "#/components/schemas/CompletionUsage"
required:
- object
- created
- choices
- usage
x-oaiMeta:
name: The edit object
example: *edit_example
CreateImageRequest:
type: object
properties:
prompt:
description: A text description of the desired image(s). The maximum length is 1000 characters for `dall-e-2` and 4000 characters for `dall-e-3`.
type: string
example: "A cute baby sea otter"
model:
anyOf:
- type: string
- type: string
enum: ["dall-e-2", "dall-e-3"]
x-oaiTypeLabel: string
default: "dall-e-2"
example: "dall-e-3"
nullable: true
description: The model to use for image generation.
n: &images_n
type: integer
minimum: 1
maximum: 10
default: 1
example: 1
nullable: true
description: The number of images to generate. Must be between 1 and 10. For `dall-e-3`, only `n=1` is supported.
quality:
type: string
enum: ["standard", "hd"]
default: "standard"
example: "standard"
description: The quality of the image that will be generated. `hd` creates images with finer details and greater consistency across the image. This param is only supported for `dall-e-3`.
response_format: &images_response_format
type: string
enum: ["url", "b64_json"]
default: "url"
example: "url"
nullable: true
description: The format in which the generated images are returned. Must be one of `url` or `b64_json`.
size: &images_size
type: string
enum: ["256x256", "512x512", "1024x1024", "1792x1024", "1024x1792"]
default: "1024x1024"
example: "1024x1024"
nullable: true
description: The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024` for `dall-e-2`. Must be one of `1024x1024`, `1792x1024`, or `1024x1792` for `dall-e-3` models.
style:
type: string
enum: ["vivid", "natural"]
default: "vivid"
example: "vivid"
nullable: true
description: The style of the generated images. Must be one of `vivid` or `natural`. Vivid causes the model to lean towards generating hyper-real and dramatic images. Natural causes the model to produce more natural, less hyper-real looking images. This param is only supported for `dall-e-3`.
user: *end_user_param_configuration
required:
- prompt
ImagesResponse:
properties:
created:
type: integer
data:
type: array
items:
$ref: "#/components/schemas/Image"
required:
- created
- data
Image:
type: object
description: Represents the url or the content of an image generated by the OpenAI API.
properties:
b64_json:
type: string
description: The base64-encoded JSON of the generated image, if `response_format` is `b64_json`.
url:
type: string
description: The URL of the generated image, if `response_format` is `url` (default).
revised_prompt:
type: string
description: The prompt that was used to generate the image, if there was any revision to the prompt.
x-oaiMeta:
name: The image object
example: |
{
"url": "...",
"revised_prompt": "..."
}
CreateImageEditRequest:
type: object
properties:
image:
description: The image to edit. Must be a valid PNG file, less than 4MB, and square. If mask is not provided, image must have transparency, which will be used as the mask.
type: string
format: binary
prompt:
description: A text description of the desired image(s). The maximum length is 1000 characters.
type: string
example: "A cute baby sea otter wearing a beret"
mask:
description: An additional image whose fully transparent areas (e.g. where alpha is zero) indicate where `image` should be edited. Must be a valid PNG file, less than 4MB, and have the same dimensions as `image`.
type: string
format: binary
model:
anyOf:
- type: string
- type: string
enum: ["dall-e-2"]
x-oaiTypeLabel: string
default: "dall-e-2"
example: "dall-e-2"
nullable: true
description: The model to use for image generation. Only `dall-e-2` is supported at this time.
n:
type: integer
minimum: 1
maximum: 10
default: 1
example: 1
nullable: true
description: The number of images to generate. Must be between 1 and 10.
size: &dalle2_images_size
type: string
enum: ["256x256", "512x512", "1024x1024"]
default: "1024x1024"
example: "1024x1024"
nullable: true
description: The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024`.
response_format: *images_response_format
user: *end_user_param_configuration
required:
- prompt
- image
CreateImageVariationRequest:
type: object
properties:
image:
description: The image to use as the basis for the variation(s). Must be a valid PNG file, less than 4MB, and square.
type: string
format: binary
model:
anyOf:
- type: string
- type: string
enum: ["dall-e-2"]
x-oaiTypeLabel: string
default: "dall-e-2"
example: "dall-e-2"
nullable: true
description: The model to use for image generation. Only `dall-e-2` is supported at this time.
n: *images_n
response_format: *images_response_format
size: *dalle2_images_size
user: *end_user_param_configuration
required:
- image
CreateModerationRequest:
type: object
properties:
input:
description: The input text to classify
oneOf:
- type: string
default: ""
example: "I want to kill them."
- type: array
items:
type: string
default: ""
example: "I want to kill them."
model:
description: |
Two content moderations models are available: `text-moderation-stable` and `text-moderation-latest`.
The default is `text-moderation-latest` which will be automatically upgraded over time. This ensures you are always using our most accurate model. If you use `text-moderation-stable`, we will provide advanced notice before updating the model. Accuracy of `text-moderation-stable` may be slightly lower than for `text-moderation-latest`.
nullable: false
default: "text-moderation-latest"
example: "text-moderation-stable"
anyOf:
- type: string
- type: string
enum: ["text-moderation-latest", "text-moderation-stable"]
x-oaiTypeLabel: string
required:
- input
CreateModerationResponse:
type: object
description: Represents policy compliance report by OpenAI's content moderation model against a given input.
properties:
id:
type: string
description: The unique identifier for the moderation request.
model:
type: string
description: The model used to generate the moderation results.
results:
type: array
description: A list of moderation objects.
items:
type: object
properties:
flagged:
type: boolean
description: Whether the content violates [OpenAI's usage policies](/policies/usage-policies).
categories:
type: object
description: A list of the categories, and whether they are flagged or not.
properties:
hate:
type: boolean
description: Content that expresses, incites, or promotes hate based on race, gender, ethnicity, religion, nationality, sexual orientation, disability status, or caste. Hateful content aimed at non-protected groups (e.g., chess players) is harrassment.
hate/threatening:
type: boolean
description: Hateful content that also includes violence or serious harm towards the targeted group based on race, gender, ethnicity, religion, nationality, sexual orientation, disability status, or caste.
harassment:
type: boolean
description: Content that expresses, incites, or promotes harassing language towards any target.
harassment/threatening:
type: boolean
description: Harassment content that also includes violence or serious harm towards any target.
self-harm:
type: boolean
description: Content that promotes, encourages, or depicts acts of self-harm, such as suicide, cutting, and eating disorders.
self-harm/intent:
type: boolean
description: Content where the speaker expresses that they are engaging or intend to engage in acts of self-harm, such as suicide, cutting, and eating disorders.
self-harm/instructions:
type: boolean
description: Content that encourages performing acts of self-harm, such as suicide, cutting, and eating disorders, or that gives instructions or advice on how to commit such acts.
sexual:
type: boolean
description: Content meant to arouse sexual excitement, such as the description of sexual activity, or that promotes sexual services (excluding sex education and wellness).
sexual/minors:
type: boolean
description: Sexual content that includes an individual who is under 18 years old.
violence:
type: boolean
description: Content that depicts death, violence, or physical injury.
violence/graphic:
type: boolean
description: Content that depicts death, violence, or physical injury in graphic detail.
required:
- hate
- hate/threatening
- harassment
- harassment/threatening
- self-harm
- self-harm/intent
- self-harm/instructions
- sexual
- sexual/minors
- violence
- violence/graphic
category_scores:
type: object
description: A list of the categories along with their scores as predicted by model.
properties:
hate:
type: number
description: The score for the category 'hate'.
hate/threatening:
type: number
description: The score for the category 'hate/threatening'.
harassment:
type: number
description: The score for the category 'harassment'.
harassment/threatening:
type: number
description: The score for the category 'harassment/threatening'.
self-harm:
type: number
description: The score for the category 'self-harm'.
self-harm/intent:
type: number
description: The score for the category 'self-harm/intent'.
self-harm/instructions:
type: number
description: The score for the category 'self-harm/instructions'.
sexual:
type: number
description: The score for the category 'sexual'.
sexual/minors:
type: number
description: The score for the category 'sexual/minors'.
violence:
type: number
description: The score for the category 'violence'.
violence/graphic:
type: number
description: The score for the category 'violence/graphic'.
required:
- hate
- hate/threatening
- harassment
- harassment/threatening
- self-harm
- self-harm/intent
- self-harm/instructions
- sexual
- sexual/minors
- violence
- violence/graphic
required:
- flagged
- categories
- category_scores
required:
- id
- model
- results
x-oaiMeta:
name: The moderation object
example: *moderation_example
ListFilesResponse:
type: object
properties:
data:
type: array
items:
$ref: "#/components/schemas/OpenAIFile"
object:
type: string
enum: [list]
required:
- object
- data
CreateFileRequest:
type: object
additionalProperties: false
properties:
file:
description: |
The File object (not file name) to be uploaded.
type: string
format: binary
purpose:
description: |
The intended purpose of the uploaded file.
Use "fine-tune" for [Fine-tuning](/docs/api-reference/fine-tuning) and "assistants" for [Assistants](/docs/api-reference/assistants) and [Messages](/docs/api-reference/messages). This allows us to validate the format of the uploaded file is correct for fine-tuning.
type: string
enum: ["fine-tune", "assistants"]
required:
- file
- purpose
DeleteFileResponse:
type: object
properties:
id:
type: string
object:
type: string
enum: [file]
deleted:
type: boolean
required:
- id
- object
- deleted
CreateFineTuningJobRequest:
type: object
properties:
model:
description: |
The name of the model to fine-tune. You can select one of the
[supported models](/docs/guides/fine-tuning/what-models-can-be-fine-tuned).
example: "gpt-3.5-turbo"
anyOf:
- type: string
- type: string
enum: ["babbage-002", "davinci-002", "gpt-3.5-turbo"]
x-oaiTypeLabel: string
training_file:
description: |
The ID of an uploaded file that contains training data.
See [upload file](/docs/api-reference/files/upload) for how to upload a file.
Your dataset must be formatted as a JSONL file. Additionally, you must upload your file with the purpose `fine-tune`.
See the [fine-tuning guide](/docs/guides/fine-tuning) for more details.
type: string
example: "file-abc123"
hyperparameters:
type: object
description: The hyperparameters used for the fine-tuning job.
properties:
batch_size:
description: |
Number of examples in each batch. A larger batch size means that model parameters
are updated less frequently, but with lower variance.
oneOf:
- type: string
enum: [auto]
- type: integer
minimum: 1
maximum: 256
default: auto
learning_rate_multiplier:
description: |
Scaling factor for the learning rate. A smaller learning rate may be useful to avoid
overfitting.
oneOf:
- type: string
enum: [auto]
- type: number
minimum: 0
exclusiveMinimum: true
default: auto
n_epochs:
description: |
The number of epochs to train the model for. An epoch refers to one full cycle
through the training dataset.
oneOf:
- type: string
enum: [auto]
- type: integer
minimum: 1
maximum: 50
default: auto
suffix:
description: |
A string of up to 18 characters that will be added to your fine-tuned model name.
For example, a `suffix` of "custom-model-name" would produce a model name like `ft:gpt-3.5-turbo:openai:custom-model-name:7p4lURel`.
type: string
minLength: 1
maxLength: 40
default: null
nullable: true
validation_file:
description: |
The ID of an uploaded file that contains validation data.
If you provide this file, the data is used to generate validation
metrics periodically during fine-tuning. These metrics can be viewed in
the fine-tuning results file.
The same data should not be present in both train and validation files.
Your dataset must be formatted as a JSONL file. You must upload your file with the purpose `fine-tune`.
See the [fine-tuning guide](/docs/guides/fine-tuning) for more details.
type: string
nullable: true
example: "file-abc123"
required:
- model
- training_file
ListFineTuningJobEventsResponse:
type: object
properties:
data:
type: array
items:
$ref: "#/components/schemas/FineTuningJobEvent"
object:
type: string
enum: [list]
required:
- object
- data
CreateFineTuneRequest:
type: object
properties:
training_file:
description: |
The ID of an uploaded file that contains training data.
See [upload file](/docs/api-reference/files/upload) for how to upload a file.
Your dataset must be formatted as a JSONL file, where each training
example is a JSON object with the keys "prompt" and "completion".
Additionally, you must upload your file with the purpose `fine-tune`.
See the [fine-tuning guide](/docs/guides/legacy-fine-tuning/creating-training-data) for more details.
type: string
example: "file-abc123"
batch_size:
description: |
The batch size to use for training. The batch size is the number of
training examples used to train a single forward and backward pass.
By default, the batch size will be dynamically configured to be
~0.2% of the number of examples in the training set, capped at 256 -
in general, we've found that larger batch sizes tend to work better
for larger datasets.
default: null
type: integer
nullable: true
classification_betas:
description: |
If this is provided, we calculate F-beta scores at the specified
beta values. The F-beta score is a generalization of F-1 score.
This is only used for binary classification.
With a beta of 1 (i.e. the F-1 score), precision and recall are
given the same weight. A larger beta score puts more weight on
recall and less on precision. A smaller beta score puts more weight
on precision and less on recall.
type: array
items:
type: number
example: [0.6, 1, 1.5, 2]
default: null
nullable: true
classification_n_classes:
description: |
The number of classes in a classification task.
This parameter is required for multiclass classification.
type: integer
default: null
nullable: true
classification_positive_class:
description: |
The positive class in binary classification.
This parameter is needed to generate precision, recall, and F1
metrics when doing binary classification.
type: string
default: null
nullable: true
compute_classification_metrics:
description: |
If set, we calculate classification-specific metrics such as accuracy
and F-1 score using the validation set at the end of every epoch.
These metrics can be viewed in the [results file](/docs/guides/legacy-fine-tuning/analyzing-your-fine-tuned-model).
In order to compute classification metrics, you must provide a
`validation_file`. Additionally, you must
specify `classification_n_classes` for multiclass classification or
`classification_positive_class` for binary classification.
type: boolean
default: false
nullable: true
hyperparameters:
type: object
description: The hyperparameters used for the fine-tuning job.
properties:
n_epochs:
description: |
The number of epochs to train the model for. An epoch refers to one
full cycle through the training dataset.
oneOf:
- type: string
enum: [auto]
- type: integer
minimum: 1
maximum: 50
default: auto
learning_rate_multiplier:
description: |
The learning rate multiplier to use for training.
The fine-tuning learning rate is the original learning rate used for
pretraining multiplied by this value.
By default, the learning rate multiplier is the 0.05, 0.1, or 0.2
depending on final `batch_size` (larger learning rates tend to
perform better with larger batch sizes). We recommend experimenting
with values in the range 0.02 to 0.2 to see what produces the best
results.
default: null
type: number
nullable: true
model:
description: |
The name of the base model to fine-tune. You can select one of "ada",
"babbage", "curie", "davinci", or a fine-tuned model created after 2022-04-21 and before 2023-08-22.
To learn more about these models, see the
[Models](/docs/models) documentation.
default: "curie"
example: "curie"
nullable: true
anyOf:
- type: string
- type: string
enum: ["ada", "babbage", "curie", "davinci"]
x-oaiTypeLabel: string
prompt_loss_weight:
description: |
The weight to use for loss on the prompt tokens. This controls how
much the model tries to learn to generate the prompt (as compared
to the completion which always has a weight of 1.0), and can add
a stabilizing effect to training when completions are short.
If prompts are extremely long (relative to completions), it may make
sense to reduce this weight so as to avoid over-prioritizing
learning the prompt.
default: 0.01
type: number
nullable: true
suffix:
description: |
A string of up to 40 characters that will be added to your fine-tuned model name.
For example, a `suffix` of "custom-model-name" would produce a model name like `ada:ft-your-org:custom-model-name-2022-02-15-04-21-04`.
type: string
minLength: 1
maxLength: 40
default: null
nullable: true
validation_file:
description: |
The ID of an uploaded file that contains validation data.
If you provide this file, the data is used to generate validation
metrics periodically during fine-tuning. These metrics can be viewed in
the [fine-tuning results file](/docs/guides/legacy-fine-tuning/analyzing-your-fine-tuned-model).
Your train and validation data should be mutually exclusive.
Your dataset must be formatted as a JSONL file, where each validation
example is a JSON object with the keys "prompt" and "completion".
Additionally, you must upload your file with the purpose `fine-tune`.
See the [fine-tuning guide](/docs/guides/legacy-fine-tuning/creating-training-data) for more details.
type: string
nullable: true
example: "file-abc123"
required:
- training_file
ListFineTunesResponse:
type: object
properties:
data:
type: array
items:
$ref: "#/components/schemas/FineTune"
object:
type: string
enum: [list]
required:
- object
- data
ListFineTuneEventsResponse:
type: object
properties:
data:
type: array
items:
$ref: "#/components/schemas/FineTuneEvent"
object:
type: string
enum: [list]
required:
- object
- data
CreateEmbeddingRequest:
type: object
additionalProperties: false
properties:
input:
description: |
Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for `text-embedding-ada-002`) and cannot be an empty string. [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens.
example: "The quick brown fox jumped over the lazy dog"
oneOf:
- type: string
default: ""
example: "This is a test."
- type: array
minItems: 1
items:
type: string
default: ""
example: "This is a test."
- type: array
minItems: 1
items:
type: integer
example: "[1212, 318, 257, 1332, 13]"
- type: array
minItems: 1
items:
type: array
minItems: 1
items:
type: integer
example: "[[1212, 318, 257, 1332, 13]]"
model:
description: *model_description
example: "text-embedding-ada-002"
anyOf:
- type: string
- type: string
enum: ["text-embedding-ada-002"]
x-oaiTypeLabel: string
encoding_format:
description: "The format to return the embeddings in. Can be either `float` or [`base64`](https://pypi.org/project/pybase64/)."
example: "float"
default: "float"
type: string
enum: ["float", "base64"]
user: *end_user_param_configuration
required:
- model
- input
CreateEmbeddingResponse:
type: object
properties:
data:
type: array
description: The list of embeddings generated by the model.
items:
$ref: "#/components/schemas/Embedding"
model:
type: string
description: The name of the model used to generate the embedding.
object:
type: string
description: The object type, which is always "list".
enum: [list]
usage:
type: object
description: The usage information for the request.
properties:
prompt_tokens:
type: integer
description: The number of tokens used by the prompt.
total_tokens:
type: integer
description: The total number of tokens used by the request.
required:
- prompt_tokens
- total_tokens
required:
- object
- model
- data
- usage
CreateTranscriptionRequest:
type: object
additionalProperties: false
properties:
file:
description: |
The audio file object (not file name) to transcribe, in one of these formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
type: string
x-oaiTypeLabel: file
format: binary
model:
description: |
ID of the model to use. Only `whisper-1` is currently available.
example: whisper-1
anyOf:
- type: string
- type: string
enum: ["whisper-1"]
x-oaiTypeLabel: string
language:
description: |
The language of the input audio. Supplying the input language in [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format will improve accuracy and latency.
type: string
prompt:
description: |
An optional text to guide the model's style or continue a previous audio segment. The [prompt](/docs/guides/speech-to-text/prompting) should match the audio language.
type: string
response_format:
description: |
The format of the transcript output, in one of these options: `json`, `text`, `srt`, `verbose_json`, or `vtt`.
type: string
enum:
- json
- text
- srt
- verbose_json
- vtt
default: json
temperature:
description: |
The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit.
type: number
default: 0
required:
- file
- model
# Note: This does not currently support the non-default response format types.
CreateTranscriptionResponse:
type: object
properties:
text:
type: string
required:
- text
CreateTranslationRequest:
type: object
additionalProperties: false
properties:
file:
description: |
The audio file object (not file name) translate, in one of these formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
type: string
x-oaiTypeLabel: file
format: binary
model:
description: |
ID of the model to use. Only `whisper-1` is currently available.
example: whisper-1
anyOf:
- type: string
- type: string
enum: ["whisper-1"]
x-oaiTypeLabel: string
prompt:
description: |
An optional text to guide the model's style or continue a previous audio segment. The [prompt](/docs/guides/speech-to-text/prompting) should be in English.
type: string
response_format:
description: |
The format of the transcript output, in one of these options: `json`, `text`, `srt`, `verbose_json`, or `vtt`.
type: string
default: json
temperature:
description: |
The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit.
type: number
default: 0
required:
- file
- model
# Note: This does not currently support the non-default response format types.
CreateTranslationResponse:
type: object
properties:
text:
type: string
required:
- text
CreateSpeechRequest:
type: object
additionalProperties: false
properties:
model:
description: |
One of the available [TTS models](/docs/models/tts): `tts-1` or `tts-1-hd`
anyOf:
- type: string
- type: string
enum: ["tts-1", "tts-1-hd"]
x-oaiTypeLabel: string
input:
type: string
description: The text to generate audio for. The maximum length is 4096 characters.
maxLength: 4096
voice:
description: The voice to use when generating the audio. Supported voices are `alloy`, `echo`, `fable`, `onyx`, `nova`, and `shimmer`.
type: string
enum: ["alloy", "echo", "fable", "onyx", "nova", "shimmer"]
response_format:
description: "The format to audio in. Supported formats are `mp3`, `opus`, `aac`, and `flac`."
default: "mp3"
type: string
enum: ["mp3", "opus", "aac", "flac"]
speed:
description: "The speed of the generated audio. Select a value from `0.25` to `4.0`. `1.0` is the default."
type: number
default: 1.0
minimum: 0.25
maximum: 4.0
required:
- model
- input
- voice
Model:
title: Model
description: Describes an Jan model
properties:
object:
type: string
default: model
version:
type: integer
description: The version of the Model Object file
default: 1
source_url:
type: string
format: uri
example: https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF/blob/main/zephyr-7b-beta.Q4_K_M.gguf
description: The model download source. It can be an external url or a local filepath.
id: # OpenAI-equivalent
type: string
description: The model identifier, which can be referenced in the API endpoints.
example: zephyr-7b
name:
type: string
description: Human-readable name that is used for UI
owned_by: # OpenAI-equivalent
type: string
description: The organization that owns the model (you!)
default: you # TODO
created:
type: integer
description: The Unix timestamp (in seconds) for when the model was created
description:
type: string
default: A cool model from Huggingface
state:
type: string
enum: [to_download, downloading, ready, running]
default: to_download
parameters:
type: object
description:
properties:
init:
type: object
properties:
ctx_len:
type: string
description: TODO
default: 2048
ngl:
type: string
description: TODO
default: 100
embedding:
type: bool
description: TODO
default: true
n_parallel:
type: string
description: TODO
default: 4
pre_prompt:
type: string
description: TODO
default: A chat between a curious user and an artificial intelligence
user_prompt:
type: string
description: TODO
default: "USER:"
ai_prompt:
type: string
description: TODO
default: "ASSISTANT:"
default:
{
ctx_len: 2048,
ngl: 100,
embedding: true,
n_parallel: 4,
pre_prompt: "A chat between a curious user and an artificial intelligence",
user_prompt: "USER:",
ai_prompt: "ASSISTANT:",
}
runtime:
type: object
properties:
temperature:
type: string
description: TODO
default: 0.7
token_limit:
type: string
description: TODO
default: 2048
top_k:
type: string
description: TODO
default: 0
top_p:
type: string
description: TODO
default: 1
stream:
type: string
description: TODO
default: true
default:
{
temperature: 0.7,
token_limit: 2048,
top_k: 0,
top_p: 1,
stream: true,
}
metadata:
type: object
properties:
engine:
type: string
enum: [llamacpp, api, tensorrt]
default: llamacpp
quantization:
type: string
description: TODO
default: Q4_K_M
size:
type: string
default: 7b
binaries:
type: array
description: TODO
default: TODO
default:
{ engine: llamacpp, quantization: Q4_K_M, size: 7b, binaries: TODO }
required:
- id # From OpenAI
- version
- source_url
- created # From OpenAI, autogenerated in Jan
- object # From OpenAI, autogenerated in Jan
- owned_by # From OpenAI, autogenerated in Jan
x-oaiMeta:
name: The model object
example: *retrieve_model_response
OpenAIFile:
title: OpenAIFile
description: The `File` object represents a document that has been uploaded to OpenAI.
properties:
id:
type: string
description: The file identifier, which can be referenced in the API endpoints.
bytes:
type: integer
description: The size of the file, in bytes.
created_at:
type: integer
description: The Unix timestamp (in seconds) for when the file was created.
filename:
type: string
description: The name of the file.
object:
type: string
description: The object type, which is always `file`.
enum: ["file"]
purpose:
type: string
description: The intended purpose of the file. Supported values are `fine-tune`, `fine-tune-results`, `assistants`, and `assistants_output`.
enum:
[
"fine-tune",
"fine-tune-results",
"assistants",
"assistants_output",
]
status:
type: string
deprecated: true
description: Deprecated. The current status of the file, which can be either `uploaded`, `processed`, or `error`.
enum: ["uploaded", "processed", "error"]
status_details:
type: string
deprecated: true
description: Deprecated. For details on why a fine-tuning training file failed validation, see the `error` field on `fine_tuning.job`.
required:
- id
- object
- bytes
- created_at
- filename
- purpose
- status
x-oaiMeta:
name: The File object
example: |
{
"id": "file-BK7bzQj3FfZFXr7DbL6xJwfo",
"object": "file",
"bytes": 120000,
"created_at": 1677610602,
"filename": "salesOverview.pdf",
"purpose": "assistants",
}
Embedding:
type: object
description: |
Represents an embedding vector returned by embedding endpoint.
properties:
index:
type: integer
description: The index of the embedding in the list of embeddings.
embedding:
type: array
description: |
The embedding vector, which is a list of floats. The length of vector depends on the model as listed in the [embedding guide](/docs/guides/embeddings).
items:
type: number
object:
type: string
description: The object type, which is always "embedding".
enum: [embedding]
required:
- index
- object
- embedding
x-oaiMeta:
name: The embedding object
example: |
{
"object": "embedding",
"embedding": [
0.0023064255,
-0.009327292,
.... (1536 floats total for ada-002)
-0.0028842222,
],
"index": 0
}
FineTuningJob:
type: object
title: FineTuningJob
description: |
The `fine_tuning.job` object represents a fine-tuning job that has been created through the API.
properties:
id:
type: string
description: The object identifier, which can be referenced in the API endpoints.
created_at:
type: integer
description: The Unix timestamp (in seconds) for when the fine-tuning job was created.
error:
type: object
nullable: true
description: For fine-tuning jobs that have `failed`, this will contain more information on the cause of the failure.
properties:
code:
type: string
description: A machine-readable error code.
message:
type: string
description: A human-readable error message.
param:
type: string
description: The parameter that was invalid, usually `training_file` or `validation_file`. This field will be null if the failure was not parameter-specific.
nullable: true
required:
- code
- message
- param
fine_tuned_model:
type: string
nullable: true
description: The name of the fine-tuned model that is being created. The value will be null if the fine-tuning job is still running.
finished_at:
type: integer
nullable: true
description: The Unix timestamp (in seconds) for when the fine-tuning job was finished. The value will be null if the fine-tuning job is still running.
hyperparameters:
type: object
description: The hyperparameters used for the fine-tuning job. See the [fine-tuning guide](/docs/guides/fine-tuning) for more details.
properties:
n_epochs:
oneOf:
- type: string
enum: [auto]
- type: integer
minimum: 1
maximum: 50
default: auto
description:
The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
"auto" decides the optimal number of epochs based on the size of the dataset. If setting the number manually, we support any number between 1 and 50 epochs.
required:
- n_epochs
model:
type: string
description: The base model that is being fine-tuned.
object:
type: string
description: The object type, which is always "fine_tuning.job".
enum: [fine_tuning.job]
organization_id:
type: string
description: The organization that owns the fine-tuning job.
result_files:
type: array
description: The compiled results file ID(s) for the fine-tuning job. You can retrieve the results with the [Files API](/docs/api-reference/files/retrieve-contents).
items:
type: string
example: file-abc123
status:
type: string
description: The current status of the fine-tuning job, which can be either `validating_files`, `queued`, `running`, `succeeded`, `failed`, or `cancelled`.
enum:
[
"validating_files",
"queued",
"running",
"succeeded",
"failed",
"cancelled",
]
trained_tokens:
type: integer
nullable: true
description: The total number of billable tokens processed by this fine-tuning job. The value will be null if the fine-tuning job is still running.
training_file:
type: string
description: The file ID used for training. You can retrieve the training data with the [Files API](/docs/api-reference/files/retrieve-contents).
validation_file:
type: string
nullable: true
description: The file ID used for validation. You can retrieve the validation results with the [Files API](/docs/api-reference/files/retrieve-contents).
required:
- created_at
- error
- finished_at
- fine_tuned_model
- hyperparameters
- id
- model
- object
- organization_id
- result_files
- status
- trained_tokens
- training_file
- validation_file
x-oaiMeta:
name: The fine-tuning job object
example: *fine_tuning_example
FineTuningJobEvent:
type: object
description: Fine-tuning job event object
properties:
id:
type: string
created_at:
type: integer
level:
type: string
enum: ["info", "warn", "error"]
message:
type: string
object:
type: string
enum: [fine_tuning.job.event]
required:
- id
- object
- created_at
- level
- message
x-oaiMeta:
name: The fine-tuning job event object
example: |
{
"object": "fine_tuning.job.event",
"id": "ftevent-abc123"
"created_at": 1677610602,
"level": "info",
"message": "Created fine-tuning job"
}
FineTune:
type: object
deprecated: true
description: |
The `FineTune` object represents a legacy fine-tune job that has been created through the API.
properties:
id:
type: string
description: The object identifier, which can be referenced in the API endpoints.
created_at:
type: integer
description: The Unix timestamp (in seconds) for when the fine-tuning job was created.
events:
type: array
description: The list of events that have been observed in the lifecycle of the FineTune job.
items:
$ref: "#/components/schemas/FineTuneEvent"
fine_tuned_model:
type: string
nullable: true
description: The name of the fine-tuned model that is being created.
hyperparams:
type: object
description: The hyperparameters used for the fine-tuning job. See the [fine-tuning guide](/docs/guides/legacy-fine-tuning/hyperparameters) for more details.
properties:
batch_size:
type: integer
description: |
The batch size to use for training. The batch size is the number of
training examples used to train a single forward and backward pass.
classification_n_classes:
type: integer
description: |
The number of classes to use for computing classification metrics.
classification_positive_class:
type: string
description: |
The positive class to use for computing classification metrics.
compute_classification_metrics:
type: boolean
description: |
The classification metrics to compute using the validation dataset at the end of every epoch.
learning_rate_multiplier:
type: number
description: |
The learning rate multiplier to use for training.
n_epochs:
type: integer
description: |
The number of epochs to train the model for. An epoch refers to one
full cycle through the training dataset.
prompt_loss_weight:
type: number
description: |
The weight to use for loss on the prompt tokens.
required:
- batch_size
- learning_rate_multiplier
- n_epochs
- prompt_loss_weight
model:
type: string
description: The base model that is being fine-tuned.
object:
type: string
description: The object type, which is always "fine-tune".
enum: [fine-tune]
organization_id:
type: string
description: The organization that owns the fine-tuning job.
result_files:
type: array
description: The compiled results files for the fine-tuning job.
items:
$ref: "#/components/schemas/OpenAIFile"
status:
type: string
description: The current status of the fine-tuning job, which can be either `created`, `running`, `succeeded`, `failed`, or `cancelled`.
training_files:
type: array
description: The list of files used for training.
items:
$ref: "#/components/schemas/OpenAIFile"
updated_at:
type: integer
description: The Unix timestamp (in seconds) for when the fine-tuning job was last updated.
validation_files:
type: array
description: The list of files used for validation.
items:
$ref: "#/components/schemas/OpenAIFile"
required:
- created_at
- fine_tuned_model
- hyperparams
- id
- model
- object
- organization_id
- result_files
- status
- training_files
- updated_at
- validation_files
x-oaiMeta:
name: The fine-tune object
example: *fine_tune_example
FineTuneEvent:
type: object
deprecated: true
description: Fine-tune event object
properties:
created_at:
type: integer
level:
type: string
message:
type: string
object:
type: string
enum: [fine-tune-event]
required:
- object
- created_at
- level
- message
x-oaiMeta:
name: The fine-tune event object
example: |
{
"object": "fine-tune-event",
"created_at": 1677610602,
"level": "info",
"message": "Created fine-tune job"
}
CompletionUsage:
type: object
description: Usage statistics for the completion request.
properties:
completion_tokens:
type: integer
description: Number of tokens in the generated completion.
prompt_tokens:
type: integer
description: Number of tokens in the prompt.
total_tokens:
type: integer
description: Total number of tokens used in the request (prompt + completion).
required:
- prompt_tokens
- completion_tokens
- total_tokens
AssistantObject:
type: object
title: Assistant
description: Represents an `assistant` that can call the model and use tools.
properties:
id:
description: The identifier, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `assistant`.
type: string
enum: [assistant]
created_at:
description: The Unix timestamp (in seconds) for when the assistant was created.
type: integer
name:
description: &assistant_name_param_description |
The name of the assistant. The maximum length is 256 characters.
type: string
maxLength: 256
nullable: true
description:
description: &assistant_description_param_description |
The description of the assistant. The maximum length is 512 characters.
type: string
maxLength: 512
nullable: true
model:
description: *model_description
type: string
instructions:
description: &assistant_instructions_param_description |
The system instructions that the assistant uses. The maximum length is 32768 characters.
type: string
maxLength: 32768
nullable: true
tools:
description: &assistant_tools_param_description |
A list of tool enabled on the assistant. There can be a maximum of 128 tools per assistant. Tools can be of types `code_interpreter`, `retrieval`, or `function`.
default: []
type: array
maxItems: 128
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsRetrieval"
- $ref: "#/components/schemas/AssistantToolsFunction"
x-oaiExpandable: true
file_ids:
description: &assistant_file_param_description |
A list of [file](/docs/api-reference/files) IDs attached to this assistant. There can be a maximum of 20 files attached to the assistant. Files are ordered by their creation date in ascending order.
default: []
type: array
maxItems: 20
items:
type: string
metadata:
description: &metadata_description |
Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format. Keys can be a maximum of 64 characters long and values can be a maxium of 512 characters long.
type: object
x-oaiTypeLabel: map
nullable: true
required:
- id
- object
- created_at
- name
- description
- model
- instructions
- tools
- file_ids
- metadata
x-oaiMeta:
name: The assistant object
beta: true
example: *create_assistants_example
CreateAssistantRequest:
type: object
additionalProperties: false
properties:
model:
description: *model_description
anyOf:
- type: string
name:
description: *assistant_name_param_description
type: string
nullable: true
maxLength: 256
description:
description: *assistant_description_param_description
type: string
nullable: true
maxLength: 512
instructions:
description: *assistant_instructions_param_description
type: string
nullable: true
maxLength: 32768
tools:
description: *assistant_tools_param_description
default: []
type: array
maxItems: 128
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsRetrieval"
- $ref: "#/components/schemas/AssistantToolsFunction"
x-oaiExpandable: true
file_ids:
description: *assistant_file_param_description
default: []
maxItems: 20
type: array
items:
type: string
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
required:
- model
ModifyAssistantRequest:
type: object
additionalProperties: false
properties:
model:
description: *model_description
anyOf:
- type: string
name:
description: *assistant_name_param_description
type: string
nullable: true
maxLength: 256
description:
description: *assistant_description_param_description
type: string
nullable: true
maxLength: 512
instructions:
description: *assistant_instructions_param_description
type: string
nullable: true
maxLength: 32768
tools:
description: *assistant_tools_param_description
default: []
type: array
maxItems: 128
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsRetrieval"
- $ref: "#/components/schemas/AssistantToolsFunction"
x-oaiExpandable: true
file_ids:
description: |
A list of [File](/docs/api-reference/files) IDs attached to this assistant. There can be a maximum of 20 files attached to the assistant. Files are ordered by their creation date in ascending order. If a file was previosuly attached to the list but does not show up in the list, it will be deleted from the assistant.
default: []
type: array
maxItems: 20
items:
type: string
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
DeleteAssistantResponse:
type: object
properties:
id:
type: string
deleted:
type: boolean
object:
type: string
enum: [assistant.deleted]
required:
- id
- object
- deleted
ListAssistantsResponse:
type: object
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/AssistantObject"
first_id:
type: string
example: "asst_hLBK7PXBv5Lr2NQT7KLY0ag1"
last_id:
type: string
example: "asst_QLoItBbqwyAJEzlTy4y9kOMM"
has_more:
type: boolean
example: false
required:
- object
- data
- first_id
- last_id
- has_more
x-oaiMeta:
name: List assistants response object
group: chat
example: *list_assistants_example
AssistantToolsCode:
type: object
title: Code interpreter tool
properties:
type:
type: string
description: "The type of tool being defined: `code_interpreter`"
enum: ["code_interpreter"]
required:
- type
AssistantToolsRetrieval:
type: object
title: Retrieval tool
properties:
type:
type: string
description: "The type of tool being defined: `retrieval`"
enum: ["retrieval"]
required:
- type
AssistantToolsFunction:
type: object
title: Function tool
properties:
type:
type: string
description: "The type of tool being defined: `function`"
enum: ["function"]
function:
$ref: "#/components/schemas/FunctionObject"
required:
- type
- function
RunObject:
type: object
title: A run on a thread
description: Represents an execution run on a [thread](/docs/api-reference/threads).
properties:
id:
description: The identifier, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `thread.run`.
type: string
enum: ["thread.run"]
created_at:
description: The Unix timestamp (in seconds) for when the run was created.
type: integer
thread_id:
description: The ID of the [thread](/docs/api-reference/threads) that was executed on as a part of this run.
type: string
assistant_id:
description: The ID of the [assistant](/docs/api-reference/assistants) used for execution of this run.
type: string
status:
description: The status of the run, which can be either `queued`, `in_progress`, `requires_action`, `cancelling`, `cancelled`, `failed`, `completed`, or `expired`.
type: string
enum:
[
"queued",
"in_progress",
"requires_action",
"cancelling",
"cancelled",
"failed",
"completed",
"expired",
]
required_action:
type: object
description: Details on the action required to continue the run. Will be `null` if no action is required.
nullable: true
properties:
type:
description: For now, this is always `submit_tool_outputs`.
type: string
enum: ["submit_tool_outputs"]
submit_tool_outputs:
type: object
description: Details on the tool outputs needed for this run to continue.
properties:
tool_calls:
type: array
description: A list of the relevant tool calls.
items:
$ref: "#/components/schemas/RunToolCallObject"
required:
- tool_calls
required:
- type
- submit_tool_outputs
last_error:
type: object
description: The last error associated with this run. Will be `null` if there are no errors.
nullable: true
properties:
code:
type: string
description: One of `server_error` or `rate_limit_exceeded`.
enum: ["server_error", "rate_limit_exceeded"]
message:
type: string
description: A human-readable description of the error.
required:
- code
- message
expires_at:
description: The Unix timestamp (in seconds) for when the run will expire.
type: integer
started_at:
description: The Unix timestamp (in seconds) for when the run was started.
type: integer
nullable: true
cancelled_at:
description: The Unix timestamp (in seconds) for when the run was cancelled.
type: integer
nullable: true
failed_at:
description: The Unix timestamp (in seconds) for when the run failed.
type: integer
nullable: true
completed_at:
description: The Unix timestamp (in seconds) for when the run was completed.
type: integer
nullable: true
model:
description: The model that the [assistant](/docs/api-reference/assistants) used for this run.
type: string
instructions:
description: The instructions that the [assistant](/docs/api-reference/assistants) used for this run.
type: string
tools:
description: The list of tools that the [assistant](/docs/api-reference/assistants) used for this run.
default: []
type: array
maxItems: 20
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsRetrieval"
- $ref: "#/components/schemas/AssistantToolsFunction"
x-oaiExpandable: true
file_ids:
description: The list of [File](/docs/api-reference/files) IDs the [assistant](/docs/api-reference/assistants) used for this run.
default: []
type: array
items:
type: string
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
required:
- id
- object
- created_at
- thread_id
- assistant_id
- status
- required_action
- last_error
- expires_at
- started_at
- cancelled_at
- failed_at
- completed_at
- model
- instructions
- tools
- file_ids
- metadata
x-oaiMeta:
name: The run object
beta: true
example: |
{
"id": "run_example123",
"object": "thread.run",
"created_at": 1698107661,
"assistant_id": "asst_gZ1aOomboBuYWPcXJx4vAYB0",
"thread_id": "thread_adOpf7Jbb5Abymz0QbwxAh3c",
"status": "completed",
"started_at": 1699073476,
"expires_at": null,
"cancelled_at": null,
"failed_at": null,
"completed_at": 1699073498,
"last_error": null,
"model": "gpt-4",
"instructions": null,
"tools": [{"type": "retrieval"}, {"type": "code_interpreter"}],
"file_ids": [],
"metadata": {}
}
CreateRunRequest:
type: object
additionalProperties: false
properties:
assistant_id:
description: The ID of the [assistant](/docs/api-reference/assistants) to use to execute this run.
type: string
model:
description: The ID of the [Model](/docs/api-reference/models) to be used to execute this run. If a value is provided here, it will override the model associated with the assistant. If not, the model associated with the assistant will be used.
type: string
nullable: true
instructions:
description: Override the default system message of the assistant. This is useful for modifying the behavior on a per-run basis.
type: string
nullable: true
tools:
description: Override the tools the assistant can use for this run. This is useful for modifying the behavior on a per-run basis.
nullable: true
type: array
maxItems: 20
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsRetrieval"
- $ref: "#/components/schemas/AssistantToolsFunction"
x-oaiExpandable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
required:
- thread_id
- assistant_id
ListRunsResponse:
type: object
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/RunObject"
first_id:
type: string
example: "run_hLBK7PXBv5Lr2NQT7KLY0ag1"
last_id:
type: string
example: "run_QLoItBbqwyAJEzlTy4y9kOMM"
has_more:
type: boolean
example: false
required:
- object
- data
- first_id
- last_id
- has_more
ModifyRunRequest:
type: object
additionalProperties: false
properties:
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
SubmitToolOutputsRunRequest:
type: object
additionalProperties: false
properties:
tool_outputs:
description: A list of tools for which the outputs are being submitted.
type: array
items:
type: object
properties:
tool_call_id:
type: string
description: The ID of the tool call in the `required_action` object within the run object the output is being submitted for.
output:
type: string
description: The output of the tool call to be submitted to continue the run.
required:
- tool_outputs
RunToolCallObject:
type: object
description: Tool call objects
properties:
id:
type: string
description: The ID of the tool call. This ID must be referenced when you submit the tool outputs in using the [Submit tool outputs to run](/docs/api-reference/runs/submitToolOutputs) endpoint.
type:
type: string
description: The type of tool call the output is required for. For now, this is always `function`.
enum: ["function"]
function:
type: object
description: The function definition.
properties:
name:
type: string
description: The name of the function.
arguments:
type: string
description: The arguments that the model expects you to pass to the function.
required:
- name
- arguments
required:
- id
- type
- function
CreateThreadAndRunRequest:
type: object
additionalProperties: false
properties:
assistant_id:
description: The ID of the [assistant](/docs/api-reference/assistants) to use to execute this run.
type: string
thread:
$ref: "#/components/schemas/CreateThreadRequest"
description: If no thread is provided, an empty thread will be created.
model:
description: The ID of the [Model](/docs/api-reference/models) to be used to execute this run. If a value is provided here, it will override the model associated with the assistant. If not, the model associated with the assistant will be used.
type: string
nullable: true
instructions:
description: Override the default system message of the assistant. This is useful for modifying the behavior on a per-run basis.
type: string
nullable: true
tools:
description: Override the tools the assistant can use for this run. This is useful for modifying the behavior on a per-run basis.
nullable: true
type: array
maxItems: 20
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsRetrieval"
- $ref: "#/components/schemas/AssistantToolsFunction"
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
required:
- thread_id
- assistant_id
ThreadObject:
type: object
title: Thread
description: Represents a thread that contains [messages](/docs/api-reference/messages).
properties:
id:
description: The identifier, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `thread`.
type: string
enum: ["thread"]
created_at:
description: The Unix timestamp (in seconds) for when the thread was created.
type: integer
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
required:
- id
- object
- created_at
- metadata
x-oaiMeta:
name: The thread object
beta: true
example: |
{
"id": "thread_abc123",
"object": "thread",
"created_at": 1698107661,
"metadata": {}
}
CreateThreadRequest:
type: object
additionalProperties: false
properties:
messages:
description: A list of [messages](/docs/api-reference/messages) to start the thread with.
type: array
items:
$ref: "#/components/schemas/CreateMessageRequest"
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
ModifyThreadRequest:
type: object
additionalProperties: false
properties:
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
DeleteThreadResponse:
type: object
properties:
id:
type: string
deleted:
type: boolean
object:
type: string
enum: [thread.deleted]
required:
- id
- object
- deleted
ListThreadsResponse:
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/ThreadObject"
first_id:
type: string
example: "asst_hLBK7PXBv5Lr2NQT7KLY0ag1"
last_id:
type: string
example: "asst_QLoItBbqwyAJEzlTy4y9kOMM"
has_more:
type: boolean
example: false
required:
- object
- data
- first_id
- last_id
- has_more
MessageObject:
type: object
title: The message object
description: Represents a message within a [thread](/docs/api-reference/threads).
properties:
id:
description: The identifier, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `thread.message`.
type: string
enum: ["thread.message"]
created_at:
description: The Unix timestamp (in seconds) for when the message was created.
type: integer
thread_id:
description: The [thread](/docs/api-reference/threads) ID that this message belongs to.
type: string
role:
description: The entity that produced the message. One of `user` or `assistant`.
type: string
enum: ["user", "assistant"]
content:
description: The content of the message in array of text and/or images.
type: array
items:
oneOf:
- $ref: "#/components/schemas/MessageContentImageFileObject"
- $ref: "#/components/schemas/MessageContentTextObject"
x-oaiExpandable: true
assistant_id:
description: If applicable, the ID of the [assistant](/docs/api-reference/assistants) that authored this message.
type: string
nullable: true
run_id:
description: If applicable, the ID of the [run](/docs/api-reference/runs) associated with the authoring of this message.
type: string
nullable: true
file_ids:
description: A list of [file](/docs/api-reference/files) IDs that the assistant should use. Useful for tools like retrieval and code_interpreter that can access files. A maximum of 10 files can be attached to a message.
default: []
maxItems: 10
type: array
items:
type: string
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
required:
- id
- object
- created_at
- thread_id
- role
- content
- assistant_id
- run_id
- file_ids
- metadata
x-oaiMeta:
name: The message object
beta: true
example: |
{
"id": "msg_dKYDWyQvtjDBi3tudL1yWKDa",
"object": "thread.message",
"created_at": 1698983503,
"thread_id": "thread_RGUhOuO9b2nrktrmsQ2uSR6I",
"role": "assistant",
"content": [
{
"type": "text",
"text": {
"value": "Hi! How can I help you today?",
"annotations": []
}
}
],
"file_ids": [],
"assistant_id": "asst_ToSF7Gb04YMj8AMMm50ZLLtY",
"run_id": "run_BjylUJgDqYK9bOhy4yjAiMrn",
"metadata": {}
}
CreateMessageRequest:
type: object
additionalProperties: false
required:
- role
- content
properties:
role:
type: string
enum: ["user"]
description: The role of the entity that is creating the message. Currently only `user` is supported.
content:
type: string
minLength: 1
maxLength: 32768
description: The content of the message.
file_ids:
description: A list of [File](/docs/api-reference/files) IDs that the message should use. There can be a maximum of 10 files attached to a message. Useful for tools like `retrieval` and `code_interpreter` that can access and use files.
default: []
type: array
minItems: 1
maxItems: 10
items:
type: string
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
ModifyMessageRequest:
type: object
additionalProperties: false
properties:
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
DeleteMessageResponse:
type: object
properties:
id:
type: string
deleted:
type: boolean
object:
type: string
enum: [thread.message.deleted]
required:
- id
- object
- deleted
ListMessagesResponse:
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/MessageObject"
first_id:
type: string
example: "msg_hLBK7PXBv5Lr2NQT7KLY0ag1"
last_id:
type: string
example: "msg_QLoItBbqwyAJEzlTy4y9kOMM"
has_more:
type: boolean
example: false
required:
- object
- data
- first_id
- last_id
- has_more
MessageContentImageFileObject:
title: Image file
type: object
description: References an image [File](/docs/api-reference/files) in the content of a message.
properties:
type:
description: Always `image_file`.
type: string
enum: ["image_file"]
image_file:
type: object
properties:
file_id:
description: The [File](/docs/api-reference/files) ID of the image in the message content.
type: string
required:
- file_id
required:
- type
- image_file
MessageContentTextObject:
title: Text
type: object
description: The text content that is part of a message.
properties:
type:
description: Always `text`.
type: string
enum: ["text"]
text:
type: object
properties:
value:
description: The data that makes up the text.
type: string
annotations:
type: array
items:
oneOf:
- $ref: "#/components/schemas/MessageContentTextAnnotationsFileCitationObject"
- $ref: "#/components/schemas/MessageContentTextAnnotationsFilePathObject"
x-oaiExpandable: true
required:
- value
- annotations
required:
- type
- text
MessageContentTextAnnotationsFileCitationObject:
title: File citation
type: object
description: A citation within the message that points to a specific quote from a specific File associated with the assistant or the message. Generated when the assistant uses the "retrieval" tool to search files.
properties:
type:
description: Always `file_citation`.
type: string
enum: ["file_citation"]
text:
description: The text in the message content that needs to be replaced.
type: string
file_citation:
type: object
properties:
file_id:
description: The ID of the specific File the citation is from.
type: string
quote:
description: The specific quote in the file.
type: string
required:
- file_id
- quote
start_index:
type: integer
minimum: 0
end_index:
type: integer
minimum: 0
required:
- type
- text
- file_citation
- start_index
- end_index
MessageContentTextAnnotationsFilePathObject:
title: File path
type: object
description: A URL for the file that's generated when the assistant used the `code_interpreter` tool to generate a file.
properties:
type:
description: Always `file_path`.
type: string
enum: ["file_path"]
text:
description: The text in the message content that needs to be replaced.
type: string
file_path:
type: object
properties:
file_id:
description: The ID of the file that was generated.
type: string
required:
- file_id
start_index:
type: integer
minimum: 0
end_index:
type: integer
minimum: 0
required:
- type
- text
- file_path
- start_index
- end_index
RunStepObject:
type: object
title: Run steps
description: |
Represents a step in execution of a run.
properties:
id:
description: The identifier of the run step, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `thread.run.step``.
type: string
enum: ["thread.run.step"]
created_at:
description: The Unix timestamp (in seconds) for when the run step was created.
type: integer
assistant_id:
description: The ID of the [assistant](/docs/api-reference/assistants) associated with the run step.
type: string
thread_id:
description: The ID of the [thread](/docs/api-reference/threads) that was run.
type: string
run_id:
description: The ID of the [run](/docs/api-reference/runs) that this run step is a part of.
type: string
type:
description: The type of run step, which can be either `message_creation` or `tool_calls`.
type: string
enum: ["message_creation", "tool_calls"]
status:
description: The status of the run step, which can be either `in_progress`, `cancelled`, `failed`, `completed`, or `expired`.
type: string
enum: ["in_progress", "cancelled", "failed", "completed", "expired"]
step_details:
type: object
description: The details of the run step.
oneOf:
- $ref: "#/components/schemas/RunStepDetailsMessageCreationObject"
- $ref: "#/components/schemas/RunStepDetailsToolCallsObject"
x-oaiExpandable: true
last_error:
type: object
description: The last error associated with this run step. Will be `null` if there are no errors.
nullable: true
properties:
code:
type: string
description: One of `server_error` or `rate_limit_exceeded`.
enum: ["server_error", "rate_limit_exceeded"]
message:
type: string
description: A human-readable description of the error.
required:
- code
- message
expired_at:
description: The Unix timestamp (in seconds) for when the run step expired. A step is considered expired if the parent run is expired.
type: integer
nullable: true
cancelled_at:
description: The Unix timestamp (in seconds) for when the run step was cancelled.
type: integer
nullable: true
failed_at:
description: The Unix timestamp (in seconds) for when the run step failed.
type: integer
nullable: true
completed_at:
description: The Unix timestamp (in seconds) for when the run step completed.
type: integer
nullable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
required:
- id
- object
- created_at
- assistant_id
- thread_id
- run_id
- type
- status
- step_details
- last_error
- expired_at
- cancelled_at
- failed_at
- completed_at
- metadata
x-oaiMeta:
name: The run step object
beta: true
example: *run_step_object_example
ListRunStepsResponse:
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/RunStepObject"
first_id:
type: string
example: "step_hLBK7PXBv5Lr2NQT7KLY0ag1"
last_id:
type: string
example: "step_QLoItBbqwyAJEzlTy4y9kOMM"
has_more:
type: boolean
example: false
required:
- object
- data
- first_id
- last_id
- has_more
RunStepDetailsMessageCreationObject:
title: Message creation
type: object
description: Details of the message creation by the run step.
properties:
type:
description: Always `message_creation``.
type: string
enum: ["message_creation"]
message_creation:
type: object
properties:
message_id:
type: string
description: The ID of the message that was created by this run step.
required:
- message_id
required:
- type
- message_creation
RunStepDetailsToolCallsObject:
title: Tool calls
type: object
description: Details of the tool call.
properties:
type:
description: Always `tool_calls`.
type: string
enum: ["tool_calls"]
tool_calls:
type: array
description: |
An array of tool calls the run step was involved in. These can be associated with one of three types of tools: `code_interpreter`, `retrieval`, or `function`.
items:
type: object
oneOf:
- $ref: "#/components/schemas/RunStepDetailsToolCallsCodeObject"
- $ref: "#/components/schemas/RunStepDetailsToolCallsRetrievalObject"
- $ref: "#/components/schemas/RunStepDetailsToolCallsFunctionObject"
x-oaiExpandable: true
required:
- type
- tool_calls
RunStepDetailsToolCallsCodeObject:
title: Code interpreter tool call
type: object
description: Details of the Code Interpreter tool call the run step was involved in.
properties:
id:
type: string
description: The ID of the tool call.
type:
type: string
description: The type of tool call. This is always going to be `code_interpreter` for this type of tool call.
enum: ["code_interpreter"]
code_interpreter:
type: object
description: The Code Interpreter tool call definition.
required:
- input
- outputs
properties:
input:
type: string
description: The input to the Code Interpreter tool call.
outputs:
type: array
description: The outputs from the Code Interpreter tool call. Code Interpreter can output one or more items, including text (`logs`) or images (`image`). Each of these are represented by a different object type.
items:
type: object
oneOf:
- $ref: "#/components/schemas/RunStepDetailsToolCallsCodeOutputLogsObject"
- $ref: "#/components/schemas/RunStepDetailsToolCallsCodeOutputImageObject"
x-oaiExpandable: true
required:
- id
- type
- code_interpreter
RunStepDetailsToolCallsCodeOutputLogsObject:
title: Code interpreter log output
type: object
description: Text output from the Code Interpreter tool call as part of a run step.
properties:
type:
description: Always `logs`.
type: string
enum: ["logs"]
logs:
type: string
description: The text output from the Code Interpreter tool call.
required:
- type
- logs
RunStepDetailsToolCallsCodeOutputImageObject:
title: Code interpreter image output
type: object
properties:
type:
description: Always `image`.
type: string
enum: ["image"]
image:
type: object
properties:
file_id:
description: The [file](/docs/api-reference/files) ID of the image.
type: string
required:
- file_id
required:
- type
- image
RunStepDetailsToolCallsRetrievalObject:
title: Retrieval tool call
type: object
properties:
id:
type: string
description: The ID of the tool call object.
type:
type: string
description: The type of tool call. This is always going to be `retrieval` for this type of tool call.
enum: ["retrieval"]
retrieval:
type: object
description: For now, this is always going to be an empty object.
x-oaiTypeLabel: map
required:
- id
- type
- retrieval
RunStepDetailsToolCallsFunctionObject:
type: object
title: Function tool call
properties:
id:
type: string
description: The ID of the tool call object.
type:
type: string
description: The type of tool call. This is always going to be `function` for this type of tool call.
enum: ["function"]
function:
type: object
description: The definition of the function that was called.
properties:
name:
type: string
description: The name of the function.
arguments:
type: string
description: The arguments passed to the function.
output:
type: string
description: The output of the function. This will be `null` if the outputs have not been [submitted](/docs/api-reference/runs/submitToolOutputs) yet.
nullable: true
required:
- name
- arguments
- output
required:
- id
- type
- function
AssistantFileObject:
type: object
title: Assistant files
description: A list of [Files](/docs/api-reference/files) attached to an `assistant`.
properties:
id:
description: The identifier, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `assistant.file`.
type: string
enum: [assistant.file]
created_at:
description: The Unix timestamp (in seconds) for when the assistant file was created.
type: integer
assistant_id:
description: The assistant ID that the file is attached to.
type: string
required:
- id
- object
- created_at
- assistant_id
x-oaiMeta:
name: The assistant file object
beta: true
example: |
{
"id": "file-wB6RM6wHdA49HfS2DJ9fEyrH",
"object": "assistant.file",
"created_at": 1699055364,
"assistant_id": "asst_FBOFvAOHhwEWMghbMGseaPGQ"
}
CreateAssistantFileRequest:
type: object
additionalProperties: false
properties:
file_id:
description: A [File](/docs/api-reference/files) ID (with `purpose="assistants"`) that the assistant should use. Useful for tools like `retrieval` and `code_interpreter` that can access files.
type: string
required:
- file_id
DeleteAssistantFileResponse:
type: object
description: Deletes the association between the assistant and the file, but does not delete the [File](/docs/api-reference/files) object itself.
properties:
id:
type: string
deleted:
type: boolean
object:
type: string
enum: [assistant.file.deleted]
required:
- id
- object
- deleted
ListAssistantFilesResponse:
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/AssistantFileObject"
first_id:
type: string
example: "file-hLBK7PXBv5Lr2NQT7KLY0ag1"
last_id:
type: string
example: "file-QLoItBbqwyAJEzlTy4y9kOMM"
has_more:
type: boolean
example: false
required:
- object
- data
- items
- first_id
- last_id
- has_more
MessageFileObject:
type: object
title: Message files
description: A list of files attached to a `message`.
properties:
id:
description: The identifier, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `thread.message.file`.
type: string
enum: ["thread.message.file"]
created_at:
description: The Unix timestamp (in seconds) for when the message file was created.
type: integer
message_id:
description: The ID of the [message](/docs/api-reference/messages) that the [File](/docs/api-reference/files) is attached to.
type: string
required:
- id
- object
- created_at
- message_id
x-oaiMeta:
name: The message file object
beta: true
example: |
{
"id": "file-BK7bzQj3FfZFXr7DbL6xJwfo",
"object": "thread.message.file",
"created_at": 1698107661,
"message_id": "message_QLoItBbqwyAJEzlTy4y9kOMM",
"file_id": "file-BK7bzQj3FfZFXr7DbL6xJwfo"
}
ListMessageFilesResponse:
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/MessageFileObject"
first_id:
type: string
example: "file-hLBK7PXBv5Lr2NQT7KLY0ag1"
last_id:
type: string
example: "file-QLoItBbqwyAJEzlTy4y9kOMM"
has_more:
type: boolean
example: false
required:
- object
- data
- items
- first_id
- last_id
- has_more
security:
- ApiKeyAuth: []
x-oaiMeta:
groups:
# > General Notes
# The `groups` section is used to generate the API reference pages and navigation, in the same
# order listed below. Additionally, each `group` can have a list of `sections`, each of which
# will become a navigation subroute and subsection under the group. Each section has:
# - `type`: Currently, either an `endpoint` or `object`, depending on how the section needs to
# be rendered
# - `key`: The reference key that can be used to lookup the section definition
# - `path`: The path (url) of the section, which is used to generate the navigation link.
#
# > The `object` sections maps to a schema component and the following fields are read for rendering
# - `x-oaiMeta.name`: The name of the object, which will become the section title
# - `x-oaiMeta.example`: The example object, which will be used to generate the example sample (always JSON)
# - `description`: The description of the object, which will be used to generate the section description
#
# > The `endpoint` section maps to an operation path and the following fields are read for rendering:
# - `x-oaiMeta.name`: The name of the endpoint, which will become the section title
# - `x-oaiMeta.examples`: The endpoint examples, which can be an object (meaning a single variation, most
# endpoints, or an array of objects, meaning multiple variations, e.g. the
# chat completion and completion endpoints, with streamed and non-streamed examples.
# - `x-oaiMeta.returns`: text describing what the endpoint returns.
# - `summary`: The summary of the endpoint, which will be used to generate the section description
- id: audio
title: Audio
description: |
Learn how to turn audio into text or text into audio.
Related guide: [Speech to text](/docs/guides/speech-to-text)
sections:
- type: endpoint
key: createSpeech
path: createSpeech
- type: endpoint
key: createTranscription
path: createTranscription
- type: endpoint
key: createTranslation
path: createTranslation
- id: chat
title: Chat
description: |
Given a list of messages comprising a conversation, the model will return a response.
Related guide: [Chat Completions](/docs/guides/gpt)
sections:
- type: object
key: CreateChatCompletionResponse
path: object
- type: object
key: CreateChatCompletionStreamResponse
path: streaming
- type: endpoint
key: createChatCompletion
path: create
- id: completions
title: Completions
legacy: true
description: |
Given a prompt, the model will return one or more predicted completions, and can also return the probabilities of alternative tokens at each position. We recommend most users use our Chat Completions API. [Learn more](/docs/deprecations/2023-07-06-gpt-and-embeddings)
Related guide: [Legacy Completions](/docs/guides/gpt/completions-api)
sections:
- type: object
key: CreateCompletionResponse
path: object
- type: endpoint
key: createCompletion
path: create
- id: embeddings
title: Embeddings
description: |
Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms.
Related guide: [Embeddings](/docs/guides/embeddings)
sections:
- type: object
key: Embedding
path: object
- type: endpoint
key: createEmbedding
path: create
- id: fine-tuning
title: Fine-tuning
description: |
Manage fine-tuning jobs to tailor a model to your specific training data.
Related guide: [Fine-tune models](/docs/guides/fine-tuning)
sections:
- type: object
key: FineTuningJob
path: object
- type: endpoint
key: createFineTuningJob
path: create
- type: endpoint
key: listPaginatedFineTuningJobs
path: list
- type: endpoint
key: retrieveFineTuningJob
path: retrieve
- type: endpoint
key: cancelFineTuningJob
path: cancel
- type: object
key: FineTuningJobEvent
path: event-object
- type: endpoint
key: listFineTuningEvents
path: list-events
- id: files
title: Files
description: |
Files are used to upload documents that can be used with features like [Assistants](/docs/api-reference/assistants) and [Fine-tuning](/docs/api-reference/fine-tuning).
sections:
- type: object
key: OpenAIFile
path: object
- type: endpoint
key: listFiles
path: list
- type: endpoint
key: createFile
path: create
- type: endpoint
key: deleteFile
path: delete
- type: endpoint
key: retrieveFile
path: retrieve
- type: endpoint
key: downloadFile
path: retrieve-contents
- id: images
title: Images
description: |
Given a prompt and/or an input image, the model will generate a new image.
Related guide: [Image generation](/docs/guides/images)
sections:
- type: object
key: Image
path: object
- type: endpoint
key: createImage
path: create
- type: endpoint
key: createImageEdit
path: createEdit
- type: endpoint
key: createImageVariation
path: createVariation
- id: models
title: Models
description: |
List and describe the various models available in the API. You can refer to the [Models](/docs/models) documentation to understand what models are available and the differences between them.
sections:
- type: object
key: Model
path: object
- type: endpoint
key: listModels
path: list
- type: endpoint
key: retrieveModel
path: retrieve
- type: endpoint
key: deleteModel
path: delete
- id: moderations
title: Moderations
description: |
Given a input text, outputs if the model classifies it as violating OpenAI's content policy.
Related guide: [Moderations](/docs/guides/moderation)
sections:
- type: object
key: CreateModerationResponse
path: object
- type: endpoint
key: createModeration
path: create
- id: assistants
title: Assistants
beta: true
description: |
Build assistants that can call models and use tools to perform tasks.
[Get started with the Assistants API](/docs/assistants)
sections:
- type: object
key: AssistantObject
path: object
- type: endpoint
key: createAssistant
path: createAssistant
- type: endpoint
key: getAssistant
path: getAssistant
- type: endpoint
key: modifyAssistant
path: modifyAssistant
- type: endpoint
key: deleteAssistant
path: deleteAssistant
- type: endpoint
key: listAssistants
path: listAssistants
- type: object
key: AssistantFileObject
path: file-object
- type: endpoint
key: createAssistantFile
path: createAssistantFile
- type: endpoint
key: getAssistantFile
path: getAssistantFile
- type: endpoint
key: deleteAssistantFile
path: deleteAssistantFile
- type: endpoint
key: listAssistantFiles
path: listAssistantFiles
- id: threads
title: Threads
beta: true
description: |
Create threads that assistants can interact with.
Related guide: [Assistants](/docs/assistants/overview)
sections:
- type: object
key: ThreadObject
path: object
- type: endpoint
key: createThread
path: createThread
- type: endpoint
key: getThread
path: getThread
- type: endpoint
key: modifyThread
path: modifyThread
- type: endpoint
key: deleteThread
path: deleteThread
- id: messages
title: Messages
beta: true
description: |
Create messages within threads
Related guide: [Assistants](/docs/assistants/overview)
sections:
- type: object
key: MessageObject
path: object
- type: endpoint
key: createMessage
path: createMessage
- type: endpoint
key: getMessage
path: getMessage
- type: endpoint
key: modifyMessage
path: modifyMessage
- type: endpoint
key: listMessages
path: listMessages
- type: object
key: MessageFileObject
path: file-object
- type: endpoint
key: getMessageFile
path: getMessageFile
- type: endpoint
key: listMessageFiles
path: listMessageFiles
- id: runs
title: Runs
beta: true
description: |
Represents an execution run on a thread.
Related guide: [Assistants](/docs/assistants/overview)
sections:
- type: object
key: RunObject
path: object
- type: endpoint
key: createRun
path: createRun
- type: endpoint
key: getRun
path: getRun
- type: endpoint
key: modifyRun
path: modifyRun
- type: endpoint
key: listRuns
path: listRuns
- type: endpoint
key: submitToolOuputsToRun
path: submitToolOutputs
- type: endpoint
key: cancelRun
path: cancelRun
- type: endpoint
key: createThreadAndRun
path: createThreadAndRun
- type: object
key: RunStepObject
path: step-object
- type: endpoint
key: getRunStep
path: getRunStep
- type: endpoint
key: listRunSteps
path: listRunSteps
- id: fine-tunes
title: Fine-tunes
deprecated: true
description: |
Manage legacy fine-tuning jobs to tailor a model to your specific training data.
We recommend transitioning to the updating [fine-tuning API](/docs/guides/fine-tuning)
sections:
- type: object
key: FineTune
path: object
- type: endpoint
key: createFineTune
path: create
- type: endpoint
key: listFineTunes
path: list
- type: endpoint
key: retrieveFineTune
path: retrieve
- type: endpoint
key: cancelFineTune
path: cancel
- type: object
key: FineTuneEvent
path: event-object
- type: endpoint
key: listFineTuneEvents
path: list-events
- id: edits
title: Edits
deprecated: true
description: |
Given a prompt and an instruction, the model will return an edited version of the prompt.
sections:
- type: object
key: CreateEditResponse
path: object
- type: endpoint
key: createEdit
path: create