465 lines
14 KiB
TypeScript

const fs = require("fs");
const fsPromises = fs.promises;
const path = require("path");
const { exec, spawn } = require("child_process");
const tcpPortUsed = require("tcp-port-used");
const fetchRetry = require("fetch-retry")(global.fetch);
const osUtils = require("os-utils");
const { readFileSync, writeFileSync, existsSync } = require("fs");
// The PORT to use for the Nitro subprocess
const PORT = 3928;
const LOCAL_HOST = "127.0.0.1";
const NITRO_HTTP_SERVER_URL = `http://${LOCAL_HOST}:${PORT}`;
const NITRO_HTTP_LOAD_MODEL_URL = `${NITRO_HTTP_SERVER_URL}/inferences/llamacpp/loadmodel`;
const NITRO_HTTP_UNLOAD_MODEL_URL = `${NITRO_HTTP_SERVER_URL}/inferences/llamacpp/unloadModel`;
const NITRO_HTTP_VALIDATE_MODEL_URL = `${NITRO_HTTP_SERVER_URL}/inferences/llamacpp/modelstatus`;
const NITRO_HTTP_KILL_URL = `${NITRO_HTTP_SERVER_URL}/processmanager/destroy`;
const SUPPORTED_MODEL_FORMAT = ".gguf";
const NVIDIA_INFO_FILE = path.join(
require("os").homedir(),
"jan",
"settings",
"settings.json"
);
const DEFALT_SETTINGS = {
"notify": true,
"run_mode": "cpu",
"nvidia_driver": {
"exist": false,
"version": ""
},
"cuda": {
"exist": false,
"version": ""
},
"gpus": [],
"gpu_highest_vram": ""
}
// The subprocess instance for Nitro
let subprocess = undefined;
let currentModelFile: string = undefined;
let currentSettings = undefined;
/**
* Stops a Nitro subprocess.
* @param wrapper - The model wrapper.
* @returns A Promise that resolves when the subprocess is terminated successfully, or rejects with an error message if the subprocess fails to terminate.
*/
function stopModel(): Promise<void> {
return killSubprocess();
}
/**
* Validate nvidia and cuda for linux and windows
*/
async function updateNvidiaDriverInfo(): Promise<void> {
exec(
"nvidia-smi --query-gpu=driver_version --format=csv,noheader",
(error, stdout) => {
let data;
try {
data = JSON.parse(readFileSync(NVIDIA_INFO_FILE, "utf8"));
} catch (error) {
data = DEFALT_SETTINGS;
}
if (!error) {
const firstLine = stdout.split("\n")[0].trim();
data["nvidia_driver"].exist = true;
data["nvidia_driver"].version = firstLine;
} else {
data["nvidia_driver"].exist = false;
}
writeFileSync(NVIDIA_INFO_FILE, JSON.stringify(data, null, 2));
Promise.resolve();
}
);
}
function checkFileExistenceInPaths(file: string, paths: string[]): boolean {
return paths.some((p) => existsSync(path.join(p, file)));
}
function updateCudaExistence() {
let files: string[];
let paths: string[];
if (process.platform === "win32") {
files = ["cublas64_12.dll", "cudart64_12.dll", "cublasLt64_12.dll"];
paths = process.env.PATH ? process.env.PATH.split(path.delimiter) : [];
const nitro_cuda_path = path.join(__dirname, "bin", "win-cuda");
paths.push(nitro_cuda_path);
} else {
files = ["libcudart.so.12", "libcublas.so.12", "libcublasLt.so.12"];
paths = process.env.LD_LIBRARY_PATH
? process.env.LD_LIBRARY_PATH.split(path.delimiter)
: [];
const nitro_cuda_path = path.join(__dirname, "bin", "linux-cuda");
paths.push(nitro_cuda_path);
paths.push("/usr/lib/x86_64-linux-gnu/");
}
let cudaExists = files.every(
(file) => existsSync(file) || checkFileExistenceInPaths(file, paths)
);
let data;
try {
data = JSON.parse(readFileSync(NVIDIA_INFO_FILE, "utf8"));
} catch (error) {
data = DEFALT_SETTINGS;
}
data["cuda"].exist = cudaExists;
if (cudaExists) {
data.run_mode = "gpu";
}
writeFileSync(NVIDIA_INFO_FILE, JSON.stringify(data, null, 2));
}
async function updateGpuInfo(): Promise<void> {
exec(
"nvidia-smi --query-gpu=index,memory.total --format=csv,noheader,nounits",
(error, stdout) => {
let data;
try {
data = JSON.parse(readFileSync(NVIDIA_INFO_FILE, "utf8"));
} catch (error) {
data = DEFALT_SETTINGS;
}
if (!error) {
// Get GPU info and gpu has higher memory first
let highestVram = 0;
let highestVramId = "0";
let gpus = stdout
.trim()
.split("\n")
.map((line) => {
let [id, vram] = line.split(", ");
vram = vram.replace(/\r/g, "");
if (parseFloat(vram) > highestVram) {
highestVram = parseFloat(vram);
highestVramId = id;
}
return { id, vram };
});
data["gpus"] = gpus;
data["gpu_highest_vram"] = highestVramId;
} else {
data["gpus"] = [];
}
writeFileSync(NVIDIA_INFO_FILE, JSON.stringify(data, null, 2));
Promise.resolve();
}
);
}
async function updateNvidiaInfo() {
if (process.platform !== "darwin") {
await Promise.all([
updateNvidiaDriverInfo(),
updateCudaExistence(),
updateGpuInfo(),
]);
}
}
/**
* Initializes a Nitro subprocess to load a machine learning model.
* @param wrapper - The model wrapper.
* @returns A Promise that resolves when the model is loaded successfully, or rejects with an error message if the model is not found or fails to load.
* TODO: Should pass absolute of the model file instead of just the name - So we can modurize the module.ts to npm package
* TODO: Should it be startModel instead?
*/
async function initModel(wrapper: any): Promise<ModelOperationResponse> {
currentModelFile = wrapper.modelFullPath;
const janRoot = path.join(require("os").homedir(), "jan");
if (!currentModelFile.includes(janRoot)) {
currentModelFile = path.join(janRoot, currentModelFile);
}
const files: string[] = fs.readdirSync(currentModelFile);
// Look for GGUF model file
const ggufBinFile = files.find(
(file) =>
file === path.basename(currentModelFile) ||
file.toLowerCase().includes(SUPPORTED_MODEL_FORMAT)
);
currentModelFile = path.join(currentModelFile, ggufBinFile);
if (wrapper.model.engine !== "nitro") {
return Promise.resolve({ error: "Not a nitro model" });
} else {
const nitroResourceProbe = await getResourcesInfo();
// Convert settings.prompt_template to system_prompt, user_prompt, ai_prompt
if (wrapper.model.settings.prompt_template) {
const promptTemplate = wrapper.model.settings.prompt_template;
const prompt = promptTemplateConverter(promptTemplate);
if (prompt.error) {
return Promise.resolve({ error: prompt.error });
}
wrapper.model.settings.system_prompt = prompt.system_prompt;
wrapper.model.settings.user_prompt = prompt.user_prompt;
wrapper.model.settings.ai_prompt = prompt.ai_prompt;
}
currentSettings = {
llama_model_path: currentModelFile,
...wrapper.model.settings,
// This is critical and requires real system information
cpu_threads: nitroResourceProbe.numCpuPhysicalCore,
};
return loadModel(nitroResourceProbe);
}
}
async function loadModel(nitroResourceProbe: any | undefined) {
// Gather system information for CPU physical cores and memory
if (!nitroResourceProbe) nitroResourceProbe = await getResourcesInfo();
return (
killSubprocess()
.then(() => tcpPortUsed.waitUntilFree(PORT, 300, 5000))
// wait for 500ms to make sure the port is free for windows platform
.then(() => {
if (process.platform === "win32") {
return sleep(500);
} else {
return sleep(0);
}
})
.then(() => spawnNitroProcess(nitroResourceProbe))
.then(() => loadLLMModel(currentSettings))
.then(validateModelStatus)
.catch((err) => {
console.error("error: ", err);
// TODO: Broadcast error so app could display proper error message
return { error: err, currentModelFile };
})
);
}
// Add function sleep
function sleep(ms) {
return new Promise((resolve) => setTimeout(resolve, ms));
}
function promptTemplateConverter(promptTemplate) {
// Split the string using the markers
const systemMarker = "{system_message}";
const promptMarker = "{prompt}";
if (
promptTemplate.includes(systemMarker) &&
promptTemplate.includes(promptMarker)
) {
// Find the indices of the markers
const systemIndex = promptTemplate.indexOf(systemMarker);
const promptIndex = promptTemplate.indexOf(promptMarker);
// Extract the parts of the string
const system_prompt = promptTemplate.substring(0, systemIndex);
const user_prompt = promptTemplate.substring(
systemIndex + systemMarker.length,
promptIndex
);
const ai_prompt = promptTemplate.substring(
promptIndex + promptMarker.length
);
// Return the split parts
return { system_prompt, user_prompt, ai_prompt };
} else if (promptTemplate.includes(promptMarker)) {
// Extract the parts of the string for the case where only promptMarker is present
const promptIndex = promptTemplate.indexOf(promptMarker);
const user_prompt = promptTemplate.substring(0, promptIndex);
const ai_prompt = promptTemplate.substring(
promptIndex + promptMarker.length
);
const system_prompt = "";
// Return the split parts
return { system_prompt, user_prompt, ai_prompt };
}
// Return an error if none of the conditions are met
return { error: "Cannot split prompt template" };
}
/**
* Loads a LLM model into the Nitro subprocess by sending a HTTP POST request.
* @returns A Promise that resolves when the model is loaded successfully, or rejects with an error message if the model is not found or fails to load.
*/
function loadLLMModel(settings): Promise<Response> {
return fetchRetry(NITRO_HTTP_LOAD_MODEL_URL, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify(settings),
retries: 3,
retryDelay: 500,
});
}
/**
* Validates the status of a model.
* @returns {Promise<ModelOperationResponse>} A promise that resolves to an object.
* If the model is loaded successfully, the object is empty.
* If the model is not loaded successfully, the object contains an error message.
*/
async function validateModelStatus(): Promise<ModelOperationResponse> {
// Send a GET request to the validation URL.
// Retry the request up to 3 times if it fails, with a delay of 500 milliseconds between retries.
return fetchRetry(NITRO_HTTP_VALIDATE_MODEL_URL, {
method: "GET",
headers: {
"Content-Type": "application/json",
},
retries: 5,
retryDelay: 500,
}).then(async (res: Response) => {
// If the response is OK, check model_loaded status.
if (res.ok) {
const body = await res.json();
// If the model is loaded, return an empty object.
// Otherwise, return an object with an error message.
if (body.model_loaded) {
return { error: undefined };
}
}
return { error: "Model loading failed" };
});
}
/**
* Terminates the Nitro subprocess.
* @returns A Promise that resolves when the subprocess is terminated successfully, or rejects with an error message if the subprocess fails to terminate.
*/
async function killSubprocess(): Promise<void> {
const controller = new AbortController();
setTimeout(() => controller.abort(), 5000);
console.debug("Start requesting to kill Nitro...");
return fetch(NITRO_HTTP_KILL_URL, {
method: "DELETE",
signal: controller.signal,
})
.then(() => {
subprocess?.kill();
subprocess = undefined;
})
.catch(() => {})
.then(() => tcpPortUsed.waitUntilFree(PORT, 300, 5000))
.then(() => console.debug("Nitro is killed"));
}
/**
* Look for the Nitro binary and execute it
* Using child-process to spawn the process
* Should run exactly platform specified Nitro binary version
*/
/**
* Spawns a Nitro subprocess.
* @param nitroResourceProbe - The Nitro resource probe.
* @returns A promise that resolves when the Nitro subprocess is started.
*/
function spawnNitroProcess(nitroResourceProbe: any): Promise<any> {
console.debug("Starting Nitro subprocess...");
return new Promise(async (resolve, reject) => {
let binaryFolder = path.join(__dirname, "bin"); // Current directory by default
let cudaVisibleDevices = "";
let binaryName;
if (process.platform === "win32") {
let nvida_info = JSON.parse(readFileSync(NVIDIA_INFO_FILE, "utf8"));
if (nvida_info["run_mode"] === "cpu") {
binaryFolder = path.join(binaryFolder, "win-cpu");
} else {
binaryFolder = path.join(binaryFolder, "win-cuda");
cudaVisibleDevices = nvida_info["gpu_highest_vram"];
}
binaryName = "nitro.exe";
} else if (process.platform === "darwin") {
if (process.arch === "arm64") {
binaryFolder = path.join(binaryFolder, "mac-arm64");
} else {
binaryFolder = path.join(binaryFolder, "mac-x64");
}
binaryName = "nitro";
} else {
let nvida_info = JSON.parse(readFileSync(NVIDIA_INFO_FILE, "utf8"));
if (nvida_info["run_mode"] === "cpu") {
binaryFolder = path.join(binaryFolder, "linux-cpu");
} else {
binaryFolder = path.join(binaryFolder, "linux-cuda");
cudaVisibleDevices = nvida_info["gpu_highest_vram"];
}
binaryName = "nitro";
}
const binaryPath = path.join(binaryFolder, binaryName);
// Execute the binary
subprocess = spawn(binaryPath, [1, LOCAL_HOST, PORT], {
cwd: binaryFolder,
env: {
...process.env,
CUDA_VISIBLE_DEVICES: cudaVisibleDevices,
},
});
// Handle subprocess output
subprocess.stdout.on("data", (data) => {
console.debug(`stdout: ${data}`);
});
subprocess.stderr.on("data", (data) => {
console.error("subprocess error:" + data.toString());
console.error(`stderr: ${data}`);
});
subprocess.on("close", (code) => {
console.debug(`child process exited with code ${code}`);
subprocess = null;
reject(`child process exited with code ${code}`);
});
tcpPortUsed.waitUntilUsed(PORT, 300, 30000).then(() => {
resolve(nitroResourceProbe);
});
});
}
/**
* Get the system resources information
* TODO: Move to Core so that it can be reused
*/
function getResourcesInfo(): Promise<ResourcesInfo> {
return new Promise(async (resolve) => {
const cpu = await osUtils.cpuCount();
console.log("cpu: ", cpu);
const response: ResourcesInfo = {
numCpuPhysicalCore: cpu,
memAvailable: 0,
};
resolve(response);
});
}
function dispose() {
// clean other registered resources here
killSubprocess();
}
module.exports = {
initModel,
stopModel,
killSubprocess,
dispose,
updateNvidiaInfo,
};