jan/docs/openapi/jan.yaml
2024-03-03 07:39:39 +09:00

1044 lines
32 KiB
YAML

---
openapi: 3.0.0
info:
title: API Reference
description: >
# Introduction
Jan API is compatible with the [OpenAI API](https://platform.openai.com/docs/api-reference).
version: 0.1.8
contact:
name: Jan Discord
url: https://discord.gg/7EcEz7MrvA
license:
name: AGPLv3
url: https://github.com/janhq/nitro/blob/main/LICENSE
servers:
- url: /v1
tags:
- name: Models
description: List and describe the various models available in the API.
- name: Chat
description: >
Given a list of messages comprising a conversation, the model will
return a response.
- name: Messages
description: >
Messages capture a conversation's content. This can include the
content from LLM responses and other metadata from [chat
completions](/specs/chats).
- name: Threads
- name: Assistants
description: Configures and utilizes different AI assistants for varied tasks
x-tagGroups:
- name: Endpoints
tags:
- Models
- Chat
- name: Chat
tags:
- Assistants
- Messages
- Threads
paths:
/chat/completions:
post:
operationId: createChatCompletion
tags:
- Chat
summary: |
Create chat completion
description: >
Creates a model response for the given chat conversation. <a href
= "https://platform.openai.com/docs/api-reference/chat/create">
Equivalent to OpenAI's create chat completion. </a>
requestBody:
content:
application/json:
schema:
$ref: specs/chat.yaml#/components/schemas/ChatCompletionRequest
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: specs/chat.yaml#/components/schemas/ChatCompletionResponse
x-codeSamples:
- lang: cURL
source: |
curl -X 'POST' \
'http://localhost:1337/v1/chat/completions' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"messages": [
{
"content": "You are a helpful assistant.",
"role": "system"
},
{
"content": "Hello!",
"role": "user"
}
],
"model": "tinyllama-1.1b",
"stream": true,
"max_tokens": 2048,
"stop": [
"hello"
],
"frequency_penalty": 0,
"presence_penalty": 0,
"temperature": 0.7,
"top_p": 0.95
}'
- lang: JavaScript
source: |-
const data = {
messages: [
{
content: 'You are a helpful assistant.',
role: 'system'
},
{
content: 'Hello!',
role: 'user'
}
],
model: 'tinyllama-1.1b',
stream: true,
max_tokens: 2048,
stop: ['hello'],
frequency_penalty: 0,
presence_penalty: 0,
temperature: 0.7,
top_p: 0.95
};
fetch('http://localhost:1337/v1/chat/completions', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Accept': 'application/json'
},
body: JSON.stringify(data)
})
.then(response => response.json())
.then(data => console.log(data));
- lang: Node.js
source: |-
const fetch = require('node-fetch');
const data = {
messages: [
{
content: 'You are a helpful assistant.',
role: 'system'
},
{
content: 'Hello!',
role: 'user'
}
],
model: 'tinyllama-1.1b',
stream: true,
max_tokens: 2048,
stop: ['hello'],
frequency_penalty: 0,
presence_penalty: 0,
temperature: 0.7,
top_p: 0.95
};
fetch('http://localhost:1337/v1/chat/completions', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Accept': 'application/json'
},
body: JSON.stringify(data)
})
.then(response => response.json())
.then(data => console.log(data));
- lang: Python
source: >-
import requests
import json
data = {
"messages": [
{
"content": "You are a helpful assistant.",
"role": "system"
},
{
"content": "Hello!",
"role": "user"
}
],
"model": "tinyllama-1.1b",
"stream": true,
"max_tokens": 2048,
"stop": [
"hello"
],
"frequency_penalty": 0,
"presence_penalty": 0,
"temperature": 0.7,
"top_p": 0.95
}
response = requests.post('http://localhost:1337/v1/chat/completions', json=data)
print(response.json())
/models:
get:
operationId: listModels
tags:
- Models
summary: List models
description: >
Lists the currently available models, and provides basic
information about each one such as the owner and availability. <a href
= "https://platform.openai.com/docs/api-reference/models/list">
Equivalent to OpenAI's list model. </a>
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: specs/models.yaml#/components/schemas/ListModelsResponse
x-codeSamples:
- lang: cURL
source: |-
curl -X 'GET' \
'http://localhost:1337/v1/models' \
-H 'accept: application/json'
- lang: JavaScript
source: |-
const response = await fetch('http://localhost:1337/v1/models', {
method: 'GET',
headers: {Accept: 'application/json'}
});
const data = await response.json();
- lang: Node.js
source: |-
const fetch = require('node-fetch');
const url = 'http://localhost:1337/v1/models';
const options = {
method: 'GET',
headers: { Accept: 'application/json' }
};
fetch(url, options)
.then(res => res.json())
.then(json => console.log(json));
- lang: Python
source: |-
import requests
url = 'http://localhost:1337/v1/models'
headers = {'Accept': 'application/json'}
response = requests.get(url, headers=headers)
data = response.json()
"/models/download/{model_id}":
get:
operationId: downloadModel
tags:
- Models
summary: Download a specific model.
description: |
Download a model.
parameters:
- in: path
name: model_id
required: true
schema:
type: string
example: mistral-ins-7b-q4
description: |
The ID of the model to use for this request.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: specs/models.yaml#/components/schemas/DownloadModelResponse
x-codeSamples:
- lang: cURL
source: |-
curl -X 'GET' \
'http://localhost:1337/v1/models/download/{model_id}' \
-H 'accept: application/json'
- lang: JavaScript
source: >-
const response = await
fetch('http://localhost:1337/v1/models/download/{model_id}', {
method: 'GET',
headers: {accept: 'application/json'}
});
const data = await response.json();
- lang: Node.js
source: |-
const fetch = require('node-fetch');
fetch('http://localhost:1337/v1/models/download/{model_id}', {
method: 'GET',
headers: {accept: 'application/json'}
})
.then(res => res.json())
.then(data => console.log(data));
- lang: Python
source: >-
import requests
response = requests.get('http://localhost:1337/v1/models/download/{model_id}', headers={'accept': 'application/json'})
data = response.json()
"/models/{model_id}":
get:
operationId: retrieveModel
tags:
- Models
summary: Retrieve model
description: >
Get a model instance, providing basic information about the model
such as the owner and permissioning. <a href =
"https://platform.openai.com/docs/api-reference/models/retrieve">
Equivalent to OpenAI's retrieve model. </a>
parameters:
- in: path
name: model_id
required: true
schema:
type: string
example: mistral-ins-7b-q4
description: |
The ID of the model to use for this request.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: specs/models.yaml#/components/schemas/GetModelResponse
x-codeSamples:
- lang: cURL
source: |-
curl -X 'GET' \
'http://localhost:1337/v1/models/{model_id}' \
-H 'accept: application/json'
- lang: JavaScript
source: |-
const fetch = require('node-fetch');
const modelId = 'mistral-ins-7b-q4';
fetch(`http://localhost:1337/v1/models/${modelId}`, {
method: 'GET',
headers: {'accept': 'application/json'}
})
.then(res => res.json())
.then(json => console.log(json));
- lang: Node.js
source: |-
const fetch = require('node-fetch');
const modelId = 'mistral-ins-7b-q4';
fetch(`http://localhost:1337/v1/models/${modelId}`, {
method: 'GET',
headers: {'accept': 'application/json'}
})
.then(res => res.json())
.then(json => console.log(json));
- lang: Python
source: >-
import requests
model_id = 'mistral-ins-7b-q4'
response = requests.get(f'http://localhost:1337/v1/models/{model_id}', headers={'accept': 'application/json'})
print(response.json())
delete:
operationId: deleteModel
tags:
- Models
summary: Delete model
description: >
Delete a model. <a href =
"https://platform.openai.com/docs/api-reference/models/delete">
Equivalent to OpenAI's delete model. </a>
parameters:
- in: path
name: model_id
required: true
schema:
type: string
example: mistral-ins-7b-q4
description: |
The model id to delete
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: specs/models.yaml#/components/schemas/DeleteModelResponse
x-codeSamples:
- lang: cURL
source: |-
curl -X 'DELETE' \
'http://localhost:1337/v1/models/{model_id}' \
-H 'accept: application/json'
- lang: JavaScript
source: |-
const fetch = require('node-fetch');
const modelId = 'mistral-ins-7b-q4';
fetch(`http://localhost:1337/v1/models/${modelId}`, {
method: 'DELETE',
headers: { 'accept': 'application/json' }
})
.then(res => res.json())
.then(json => console.log(json));
- lang: Node.js
source: |-
const fetch = require('node-fetch');
const modelId = 'mistral-ins-7b-q4';
fetch(`http://localhost:1337/v1/models/${modelId}`, {
method: 'DELETE',
headers: { 'accept': 'application/json' }
})
.then(res => res.json())
.then(json => console.log(json));
- lang: Python
source: >-
import requests
model_id = 'mistral-ins-7b-q4'
response = requests.delete(f'http://localhost:1337/v1/models/{model_id}', headers={'accept': 'application/json'})
/threads:
post:
operationId: createThread
tags:
- Threads
summary: Create thread
description: >
Create a thread. <a href =
"https://platform.openai.com/docs/api-reference/threads/createThread">
Equivalent to OpenAI's create thread. </a>
requestBody:
required: false
content:
application/json:
schema:
$ref: specs/threads.yaml#/components/schemas/CreateThreadObject
responses:
"200":
description: Thread created successfully
content:
application/json:
schema:
$ref: specs/threads.yaml#/components/schemas/CreateThreadResponse
x-codeSamples:
- lang: cURL
source: |
curl -X POST http://localhost:1337/v1/threads \
-H "Content-Type: application/json" \
-d '{
"messages": [{
"role": "user",
"content": "Hello, what is AI?",
"file_ids": ["file-abc123"]
}, {
"role": "user",
"content": "How does AI work? Explain it in simple terms."
}]
}'
- lang: JavaScript
source: |-
const fetch = require('node-fetch');
fetch('http://localhost:1337/v1/threads', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
messages: [
{
role: 'user',
content: 'Hello, what is AI?',
file_ids: ['file-abc123']
},
{
role: 'user',
content: 'How does AI work? Explain it in simple terms.'
}
]
})
});
- lang: Node.js
source: |-
const fetch = require('node-fetch');
fetch('http://localhost:1337/v1/threads', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
messages: [
{
role: 'user',
content: 'Hello, what is AI?',
file_ids: ['file-abc123']
},
{
role: 'user',
content: 'How does AI work? Explain it in simple terms.'
}
]
})
});
- lang: Python
source: |-
import requests
url = 'http://localhost:1337/v1/threads'
payload = {
'messages': [
{
'role': 'user',
'content': 'Hello, what is AI?',
'file_ids': ['file-abc123']
},
{
'role': 'user',
'content': 'How does AI work? Explain it in simple terms.'
}
]
}
response = requests.post(url, json=payload)
print(response.text)
get:
operationId: listThreads
tags:
- Threads
summary: List threads
description: |
Retrieves a list of all threads available in the system.
responses:
"200":
description: List of threads retrieved successfully
content:
application/json:
schema:
type: array
items:
$ref: specs/threads.yaml#/components/schemas/ThreadObject
example:
- id: thread_abc123
object: thread
created_at: 1699014083
assistants:
- assistant-001
metadata: {}
messages: []
- id: thread_abc456
object: thread
created_at: 1699014083
assistants:
- assistant-002
- assistant-003
metadata: {}
x-codeSamples:
- lang: cURL
source: |-
curl http://localhost:1337/v1/threads \
-H "Content-Type: application/json"
- lang: JavaScript
source: |-
const fetch = require('node-fetch');
fetch('http://localhost:1337/v1/threads', {
method: 'GET',
headers: {'Content-Type': 'application/json'}
}).then(res => res.json())
.then(json => console.log(json));
- lang: Node.js
source: |-
const fetch = require('node-fetch');
fetch('http://localhost:1337/v1/threads', {
method: 'GET',
headers: {'Content-Type': 'application/json'}
}).then(res => res.json())
.then(json => console.log(json));
- lang: Python
source: |-
import requests
url = 'http://localhost:1337/v1/threads'
headers = {'Content-Type': 'application/json'}
response = requests.get(url, headers=headers)
print(response.json())
"/threads/{thread_id}":
get:
operationId: getThread
tags:
- Threads
summary: Retrieve thread
description: >
Retrieves detailed information about a specific thread using its
thread_id. <a href =
"https://platform.openai.com/docs/api-reference/threads/getThread">
Equivalent to OpenAI's retrieve thread. </a>
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: |
The ID of the thread to retrieve.
responses:
"200":
description: Thread details retrieved successfully
content:
application/json:
schema:
$ref: specs/threads.yaml#/components/schemas/GetThreadResponse
x-codeSamples:
- lang: cURL
source: |
curl http://localhost:1337/v1/threads/{thread_id}
patch:
operationId: modifyThread
tags:
- Threads
summary: Modify thread
description: >
Modifies a thread. <a href =
"https://platform.openai.com/docs/api-reference/threads/modifyThread">
Equivalent to OpenAI's modify thread. </a>
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: |
The ID of the thread to be modified.
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
title:
type: string
description: Set the title of the thread
items:
$ref: specs/threads.yaml#/components/schemas/ThreadMessageObject
responses:
"200":
description: Thread modified successfully
content:
application/json:
schema:
$ref: specs/threads.yaml#/components/schemas/ModifyThreadResponse
x-codeSamples:
- lang: cURL
source: |
curl -X POST http://localhost:1337/v1/threads/{thread_id} \
-H "Content-Type: application/json" \
-d '{
"messages": [{
"role": "user",
"content": "Hello, what is AI?",
"file_ids": ["file-abc123"]
}, {
"role": "user",
"content": "How does AI work? Explain it in simple terms."
}]
}'
delete:
operationId: deleteThread
tags:
- Threads
summary: Delete thread
description: >
Delete a thread. <a href =
"https://platform.openai.com/docs/api-reference/threads/deleteThread">
Equivalent to OpenAI's delete thread. </a>
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: |
The ID of the thread to be deleted.
responses:
"200":
description: Thread deleted successfully
content:
application/json:
schema:
$ref: specs/threads.yaml#/components/schemas/DeleteThreadResponse
x-codeSamples:
- lang: cURL
source: |
curl -X DELETE http://localhost:1337/v1/threads/{thread_id}
/assistants:
get:
operationId: listAssistants
tags:
- Assistants
summary: List assistants
description: >
Return a list of assistants. <a href =
"https://platform.openai.com/docs/api-reference/assistants/listAssistants">
Equivalent to OpenAI's list assistants. </a>
responses:
"200":
description: List of assistants retrieved successfully
content:
application/json:
schema:
type: array
example:
- id: asst_abc123
object: assistant
version: 1
created_at: 1698984975
name: Math Tutor
description: null
avatar: https://pic.png
models:
- model_id: model_0
instructions: Be concise
events:
in: []
out: []
metadata: {}
- id: asst_abc456
object: assistant
version: 1
created_at: 1698984975
name: Physics Tutor
description: null
avatar: https://pic.png
models:
- model_id: model_1
instructions: Be concise!
events:
in: []
out: []
metadata: {}
x-codeSamples:
- lang: cURL
source: |-
curl http://localhost:1337/v1/assistants \
-H "Content-Type: application/json"
- lang: JavaScript
source: |-
fetch('http://localhost:1337/v1/assistants', {
method: 'GET',
headers: {
'Content-Type': 'application/json'
}
})
- lang: Node.js
source: |-
const fetch = require('node-fetch');
fetch('http://localhost:1337/v1/assistants', {
method: 'GET',
headers: {
'Content-Type': 'application/json'
}
})
- lang: Python
source: |-
import requests
url = 'http://localhost:1337/v1/assistants'
headers = {'Content-Type': 'application/json'}
response = requests.get(url, headers=headers)
"/assistants/{assistant_id}":
get:
operationId: getAssistant
tags:
- Assistants
summary: Retrieve assistant
description: >
Retrieves an assistant. <a href =
"https://platform.openai.com/docs/api-reference/assistants/getAssistant">
Equivalent to OpenAI's retrieve assistants. </a>
parameters:
- in: path
name: assistant_id
required: true
schema:
type: string
example: jan
description: |
The ID of the assistant to retrieve.
responses:
"200":
description: null
content:
application/json:
schema:
$ref: specs/assistants.yaml#/components/schemas/RetrieveAssistantResponse
x-codeSamples:
- lang: cURL
source: |-
curl http://localhost:1337/v1/assistants/{assistant_id} \
-H "Content-Type: application/json"
- lang: JavaScript
source: |-
const fetch = require('node-fetch');
let assistantId = 'abc123';
fetch(`http://localhost:1337/v1/assistants/${assistantId}`, {
method: 'GET',
headers: {
'Content-Type': 'application/json'
}
})
- lang: Node.js
source: |-
const fetch = require('node-fetch');
let assistantId = 'abc123';
fetch(`http://localhost:1337/v1/assistants/${assistantId}`, {
method: 'GET',
headers: {
'Content-Type': 'application/json'
}
})
- lang: Python
source: >-
import requests
assistant_id = 'abc123'
response = requests.get(f'http://localhost:1337/v1/assistants/{assistant_id}', headers={'Content-Type': 'application/json'})
"/threads/{thread_id}/messages":
get:
operationId: listMessages
tags:
- Messages
summary: List messages
description: >
Retrieves all messages from the given thread. <a href =
"https://platform.openai.com/docs/api-reference/messages/listMessages">
Equivalent to OpenAI's list messages. </a>
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: |
The ID of the thread from which to retrieve messages.
responses:
"200":
description: List of messages retrieved successfully
content:
application/json:
schema:
$ref: specs/messages.yaml#/components/schemas/ListMessagesResponse
x-codeSamples:
- lang: cURL
source: |
curl http://localhost:1337/v1/threads/{thread_id}/messages \
-H "Content-Type: application/json"
post:
operationId: createMessage
tags:
- Messages
summary: Create message
description: >
Create a message. <a href =
"https://platform.openai.com/docs/api-reference/messages/createMessage">
Equivalent to OpenAI's list messages. </a>
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: |
The ID of the thread to which the message will be posted.
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
role:
type: string
description: |
Role of the sender, either 'user' or 'assistant'.
example: user
enum:
- user
- assistant
content:
type: string
description: |
Text content of the message.
example: How does AI work? Explain it in simple terms.
required:
- role
- content
responses:
"200":
description: Message created successfully
content:
application/json:
schema:
$ref: specs/messages.yaml#/components/schemas/CreateMessageResponse
x-codeSamples:
- lang: cURL
source: |
curl -X POST http://localhost:1337/v1/threads/{thread_id}/messages \
-H "Content-Type: application/json" \
-d '{
"role": "user",
"content": "How does AI work? Explain it in simple terms."
}'
"/threads/{thread_id}/messages/{message_id}":
get:
operationId: retrieveMessage
tags:
- Messages
summary: Retrieve message
description: >
Retrieve a specific message from a thread using its thread_id and
message_id. <a href =
"https://platform.openai.com/docs/api-reference/messages/getMessage">
Equivalent to OpenAI's retrieve messages. </a>
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: |
The ID of the thread containing the message.
- in: path
name: message_id
required: true
schema:
type: string
description: |
The ID of the message to retrieve.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: specs/messages.yaml#/components/schemas/GetMessageResponse
x-codeSamples:
- lang: cURL
source: >
curl http://localhost:1337/v1/threads/{thread_id}/messages/{message_id}
\
-H "Content-Type: application/json"
x-webhooks:
ModelObject:
post:
summary: The model object
description: >
Describe a model offering that can be used with the API. <a href =
"https://platform.openai.com/docs/api-reference/models/object">
Equivalent to OpenAI's model object. </a>
operationId: ModelObject
tags:
- Models
requestBody:
content:
application/json:
schema:
$ref: specs/models.yaml#/components/schemas/ModelObject
AssistantObject:
post:
summary: The assistant object
description: >
Build assistants that can call models and use tools to perform
tasks. <a href =
"https://platform.openai.com/docs/api-reference/assistants"> Equivalent
to OpenAI's assistants object. </a>
operationId: AssistantObjects
tags:
- Assistants
requestBody:
content:
application/json:
schema:
$ref: specs/assistants.yaml#/components/schemas/AssistantObject
MessageObject:
post:
summary: The message object
description: >
Information about a message in the thread. <a href =
"https://platform.openai.com/docs/api-reference/messages/object">
Equivalent to OpenAI's message object. </a>
operationId: MessageObject
tags:
- Messages
requestBody:
content:
application/json:
schema:
$ref: specs/messages.yaml#/components/schemas/MessageObject
ThreadObject:
post:
summary: The thread object
description: Represents a thread that contains messages. <a href =
"https://platform.openai.com/docs/api-reference/threads/object">
Equivalent to OpenAI's thread object. </a>
operationId: ThreadObject
tags:
- Threads
requestBody:
content:
application/json:
schema:
$ref: specs/threads.yaml#/components/schemas/ThreadObject