126 lines
5.2 KiB
Markdown
126 lines
5.2 KiB
Markdown
# 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering
|
||
|
||
## arXiv Preprint
|
||
|
||
### [Project Page](https://guanjunwu.github.io/4dgs/index.html)| [arXiv Paper](https://arxiv.org/abs/2310.08528)
|
||
|
||
|
||
[Guanjun Wu](https://guanjunwu.github.io/)<sup>1*</sup>, [Taoran Yi](https://github.com/taoranyi)<sup>2*</sup>,
|
||
[Jiemin Fang](https://jaminfong.cn/)<sup>3‡</sup>, [Lingxi Xie](http://lingxixie.com/)<sup>3</sup>, </br>[Xiaopeng Zhang](https://scholar.google.com/citations?user=Ud6aBAcAAAAJ&hl=zh-CN)<sup>3</sup>, [Wei Wei](https://www.eric-weiwei.com/)<sup>1</sup>,[Wenyu Liu](http://eic.hust.edu.cn/professor/liuwenyu/)<sup>2</sup>, [Qi Tian](https://www.qitian1987.com/)<sup>3</sup> , [Xinggang Wang](https://xwcv.github.io)<sup>2‡✉</sup>
|
||
|
||
<sup>1</sup>School of CS, HUST   <sup>2</sup>School of EIC, HUST   <sup>3</sup>Huawei Inc.  
|
||
|
||
<sup>\*</sup> Equal Contributions. <sup>$\ddagger$</sup> Project Lead. <sup>✉</sup> Corresponding Author.
|
||
|
||
---------------------------------------------------
|
||
|
||
---
|
||
|
||

|
||
Our method converges very quickly and achieves real-time rendering speed.
|
||
|
||
Colab demo:[](https://colab.research.google.com/github/hustvl/4DGaussians/blob/master/4DGaussians.ipynb) (Thanks [camenduru](https://github.com/camenduru/4DGaussians-colab).)
|
||
|
||
<video width="320" height="240" controls>
|
||
<source src="assets/teaservideo.mp4" type="video/mp4">
|
||
</video>
|
||
|
||
<video width="320" height="240" controls>
|
||
<source src="assets/cut_roasted_beef_time.mp4" type="video/mp4">
|
||
</video>
|
||
|
||
|
||
## Environmental Setups
|
||
Please follow the [3D-GS](https://github.com/graphdeco-inria/gaussian-splatting) to install the relative packages.
|
||
```bash
|
||
git clone https://github.com/hustvl/4DGaussians
|
||
cd 4DGaussians
|
||
git submodule update --init --recursive
|
||
conda create -n Gaussians4D python=3.7
|
||
conda activate Gaussians4D
|
||
|
||
pip install -r requirements.txt
|
||
pip install -e submodules/depth-diff-gaussian-rasterization
|
||
pip install -e submodules/simple-knn
|
||
```
|
||
In our environment, we use pytorch=1.13.1+cu116.
|
||
## Data Preparation
|
||
**For synthetic scenes:**
|
||
The dataset provided in [D-NeRF](https://github.com/albertpumarola/D-NeRF) is used. You can download the dataset from [dropbox](https://www.dropbox.com/s/0bf6fl0ye2vz3vr/data.zip?dl=0).
|
||
|
||
**For real dynamic scenes:**
|
||
The dataset provided in [HyperNeRF](https://github.com/google/hypernerf) is used. You can download scenes from [Hypernerf Dataset](https://github.com/google/hypernerf/releases/tag/v0.1) and organize them as [Nerfies](https://github.com/google/nerfies#datasets). Meanwhile, [Plenoptic Dataset](https://github.com/facebookresearch/Neural_3D_Video) could be downloaded from their official websites. To save the memory, you should extract the frames of each video and then organize your dataset as follows.
|
||
```
|
||
├── data
|
||
│ | dnerf
|
||
│ ├── mutant
|
||
│ ├── standup
|
||
│ ├── ...
|
||
│ | hypernerf
|
||
│ ├── interp
|
||
│ ├── misc
|
||
│ ├── virg
|
||
│ | dynerf
|
||
│ ├── cook_spinach
|
||
│ ├── cam00
|
||
│ ├── images
|
||
│ ├── 0000.png
|
||
│ ├── 0001.png
|
||
│ ├── 0002.png
|
||
│ ├── ...
|
||
│ ├── cam01
|
||
│ ├── images
|
||
│ ├── 0000.png
|
||
│ ├── 0001.png
|
||
│ ├── ...
|
||
│ ├── cut_roasted_beef
|
||
| ├── ...
|
||
```
|
||
|
||
|
||
## Training
|
||
For training synthetic scenes such as `bouncingballs`, run
|
||
```
|
||
python train.py -s data/dnerf/bouncingballs --port 6017 --expname "dnerf/bouncingballs" --configs arguments/dnerf/bouncingballs.py
|
||
```
|
||
You can customize your training config through the config files.
|
||
## Rendering
|
||
Run the following script to render the images.
|
||
|
||
```
|
||
python render.py --model_path "output/dnerf/bouncingballs/" --skip_train --configs arguments/dnerf/bouncingballs.py &
|
||
```
|
||
|
||
|
||
## Evaluation
|
||
You can just run the following script to evaluate the model.
|
||
|
||
```
|
||
python metrics.py --model_path "output/dnerf/bouncingballs/"
|
||
```
|
||
## Scripts
|
||
|
||
There are some helpful scripts in `scripts/`, please feel free to use them.
|
||
|
||
---
|
||
## Contributions
|
||
|
||
**This project is still under development. Please feel free to raise issues or submit pull requests to contribute to our codebase.**
|
||
|
||
---
|
||
Some source code of ours is borrowed from [3DGS](https://github.com/graphdeco-inria/gaussian-splatting), [k-planes](https://github.com/Giodiro/kplanes_nerfstudio),[HexPlane](https://github.com/Caoang327/HexPlane), [TiNeuVox](https://github.com/hustvl/TiNeuVox). We sincerely appreciate the excellent works of these authors.
|
||
|
||
## Acknowledgement
|
||
|
||
We would like to express our sincere gratitude to @zhouzhenghong-gt for his revisions to our code and discussions on the content of our paper.
|
||
## Citation
|
||
If you find this repository/work helpful in your research, welcome to cite the paper and give a ⭐.
|
||
```
|
||
@article{wu20234dgaussians,
|
||
title={4D Gaussian Splatting for Real-Time Dynamic Scene Rendering},
|
||
author={Wu, Guanjun and Yi, Taoran and Fang, Jiemin and Xie, Lingxi and Zhang, Xiaopeng and Wei Wei and Liu, Wenyu and Tian, Qi and Wang Xinggang},
|
||
journal={arXiv preprint arXiv:2310.08528},
|
||
year={2023}
|
||
}
|
||
```
|