SpaTrackerV2/README.md
2025-06-12 15:54:48 +08:00

4.2 KiB

SpatialTrackerV3: 3D Point Tracking Made Easy

CAD&CG, Zhejiang University; University of Oxford; Ant Research; Pixelwise AI; ByteDance Seed

Yuxi Xiao, Jianyuan Wang, Nan Xue, Nikita Karaev, Iurii Makarov, Bingyi Kang, Xin Zhu, Hujun Bao, Yujun Shen, Xiaowei Zhou

Project Page | BibTeX | Goolge Drive

Technical Report Open In Colab Spaces

TODO List

  1. Release Offline Version

    • SpaTrack3 + Moge ➔ supports unposed RGB as input.
    • SpaTrack3+ MegaSAM ➔ supports Posed RGBD as input.
    • SpaTrack3 + VGGT ➔ make VGGT works in Dynamic Scenes.
  2. Release Online Version

    • Sliding windows version.
  3. More Releases

    • Some Ceres Python Bindings designed for SpatialTracker and Dynamic Reconstruction.
    • More supports for other Depth Model, i.e., DepthAnything, StereoFoundation, UniDepth, Metric3D.

Set up the environment

To set up the environment for running the SpaTrack model, follow these steps:

  1. Clone the Repository:

    git clone git@github.com:henry123-boy/SpaTrackerV3.git
    cd SpaTrackerV3
    
  2. Create a Virtual Environment: It's recommended to use a virtual environment to manage dependencies.

    conda create -n SpaTrack3 python=3.11
    conda activate SpaTrack3
    
  3. Install Dependencies:

    Install the torch dependencies pip (tested with torch2.4).

    python -m pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu124
    

    Install the required Python packages using pip.

    python -m pip install -r requirements.txt
    
  4. Install SpaTrack3 Visualizer:

    cd viser
    python -m pip install -e .
    

By following these steps, you should have a working environment ready to run the SpaTrack model.

Download the Checkpoints

mkdir -p checkpoints

Step1: Download the checkpoint of Moge from here, and put the model.pt into ./checkpoints/

Step2: Download the checkpoint of SpaTrack3 from GoolgeDrive, and place it into ./checkpoints/

Quick Start

We gave two examples to illustrate the usage of SpaTrack3. Firstly, please download ckpts and examples via:

sh scripts/download.sh

Type1: Posed RGBD video (Example0)

We provide an example who has Posed RGBD input with MegaSAM.

python inference.py --data_type="RGBD" --data_dir="assets/example0" --video_name="snowboard" --fps=1

Type2: unposed RGB video (Example1)

python inference.py --data_type="RGB" --data_dir="assets/example1" --video_name="xhs" --fps=6

Visualize your results

We provide two types of visualization. The guidance will be displayed in the terminal after running inference.py

Please follow the instructions in the app_3rd README to configure the dependencies. Then,

python -m pip install gradio==5.31.0 pako

Our gradio demo enable the user to track the points on the target object easily, just try:

python app.py

Demo