bandit-runner/docs/development_documentation/IMPLEMENTATION-SUMMARY.md
2025-10-09 22:03:37 -06:00

10 KiB

LangGraph Agent Framework - Implementation Summary

Overview

Successfully implemented a comprehensive LangGraph.js-based agentic framework for the Bandit Runner application. The framework runs entirely in Cloudflare Durable Objects and provides a beautiful retro terminal UI for interacting with autonomous agents that solve the OverTheWire Bandit wargame.

What Was Implemented

1. Core Backend Components

State Management (src/lib/agents/bandit-state.ts)

  • Comprehensive TypeScript interfaces for agent state
  • Level goals for all 34 Bandit levels
  • Command and thought log tracking
  • Checkpoint system for pause/resume functionality

LLM Provider Layer (src/lib/agents/llm-provider.ts)

  • OpenRouter integration supporting multiple models:
    • OpenAI (GPT-4o, GPT-4o Mini)
    • Anthropic (Claude 3.5 Sonnet, Claude 3 Haiku)
    • Meta (Llama 3.1)
    • DeepSeek, Gemini, Mistral, and more
  • Streaming and non-streaming response modes
  • Abstraction layer for easy provider switching

SSH Tool Wrappers (src/lib/agents/tools.ts)

  • ssh_connect - Establish SSH connections
  • ssh_exec - Execute commands with safety allowlist
  • validate_password - Test passwords via SSH
  • ssh_disconnect - Close connections
  • Command validation and security checks

LangGraph State Machine (src/lib/agents/graph.ts)

  • State graph with nodes:
    • plan_level - LLM plans next command
    • execute_command - Runs SSH command
    • validate_result - Checks for password
    • advance_level - Moves to next level
  • Conditional edges based on agent status
  • Integration with LangChain tools

Error Handling (src/lib/agents/error-handler.ts)

  • Error classification (network, SSH, timeout, API)
  • Retry strategies with exponential backoff
  • Cost tracking for LLM API calls
  • Spending limit enforcement

Storage Layer (src/lib/storage/run-storage.ts)

  • Durable Object storage interface
  • D1 database schema for run metadata
  • R2 storage for JSONL logs
  • Password vault with encryption
  • Data lifecycle management (DO → D1 → R2)

2. Durable Object Implementation

BanditAgentDO (src/lib/durable-objects/BanditAgentDO.ts)

  • Runs LangGraph state machine
  • WebSocket server for real-time streaming
  • HTTP endpoints for agent control:
    • /start - Start new run
    • /pause - Pause execution
    • /resume - Resume from checkpoint
    • /command - Manual command injection
    • /retry - Retry current level
    • /status - Get current state
  • Alarm-based auto-cleanup after 2 hours
  • State persistence in DO storage

3. API Routes

Agent Lifecycle (src/app/api/agent/[runId]/route.ts)

  • POST endpoints for all agent actions
  • GET endpoint for status queries
  • Durable Object proxy layer
  • Error handling and validation

WebSocket Route (src/app/api/agent/[runId]/ws/route.ts)

  • WebSocket upgrade handling
  • Bidirectional communication with Durable Object
  • Real-time event streaming

4. Frontend Components

WebSocket Hook (src/hooks/useAgentWebSocket.ts)

  • React hook for WebSocket management
  • Auto-reconnect with exponential backoff
  • Event handlers for terminal and chat updates
  • Connection state tracking
  • Ping/pong keep-alive

Agent Control Panel (src/components/agent-control-panel.tsx)

  • Model selection dropdown
  • Level range selector (0-33)
  • Streaming mode toggle
  • Start/Pause/Resume/Stop buttons
  • Status indicators (idle/running/paused/complete/failed)
  • Connection status display

Enhanced Terminal Interface (src/components/terminal-chat-interface.tsx)

  • Integrated with WebSocket for real-time updates
  • Split-pane layout (terminal left, agent chat right)
  • Command history with arrow keys
  • Panel switching (Ctrl+K/J, ESC)
  • Support for manual intervention when paused
  • Beautiful retro styling with scan lines and grid patterns
  • System messages for agent events
  • Thinking indicators

5. WebSocket Event System

Event Handlers (src/lib/websocket/agent-events.ts)

  • Standardized event types:
    • terminal_output - Command execution
    • agent_message - Agent commentary
    • thinking - Agent reasoning
    • tool_call - Tool execution
    • level_complete - Level advancement
    • run_complete - Full run completion
    • error - Error messages
  • Event routing to terminal and chat displays
  • Timestamp and metadata tracking

6. Configuration

Wrangler (wrangler.jsonc)

  • Durable Object bindings configured
  • Environment variables for SSH proxy
  • Placeholders for D1 and R2 (ready to uncomment)
  • Secret management instructions

TypeScript (src/types/env.d.ts)

  • Environment type declarations
  • Cloudflare binding types
  • Type safety for all env variables

7. Dependencies Installed

{
  "@langchain/langgraph": "latest",
  "@langchain/core": "latest", 
  "@langchain/openai": "latest",
  "zod": "latest"
}

🚧 What Still Needs to Be Done

1. SSH Proxy Service (CRITICAL)

  • Build the Node.js SSH proxy (see SSH-PROXY-README.md)
  • Deploy to Fly.io/Railway/Render
  • Update SSH_PROXY_URL in wrangler.jsonc

2. Durable Object Export

  • Export BanditAgentDO in worker entry point
  • Configure migration tag for DO deployment

3. LangGraph Integration Refinement

  • Test graph execution in Workers environment
  • May need to use @langchain/langgraph/web entry point
  • Add manual config passing to avoid async_hooks issues
  • Integrate actual tool execution (currently mocked)

4. D1 and R2 Setup

  • Create D1 database: wrangler d1 create bandit-runs
  • Run schema migrations
  • Create R2 bucket: wrangler r2 bucket create bandit-logs
  • Uncomment bindings in wrangler.jsonc

5. Secrets Configuration

wrangler secret put OPENROUTER_API_KEY
wrangler secret put ENCRYPTION_KEY

6. Testing

  • Unit tests for graph nodes
  • Integration tests for WebSocket
  • Mock SSH proxy for development
  • Load testing for concurrent runs

7. Advanced Features (Future)

  • Run history and comparison UI
  • Export functionality (JSONL, CSV)
  • Keyboard shortcuts reference modal
  • Run templates and presets
  • Cost analytics dashboard
  • Multi-run leaderboard

📝 Key Files Created

bandit-runner-app/src/
├── lib/
│   ├── agents/
│   │   ├── bandit-state.ts        (State schema, level goals)
│   │   ├── llm-provider.ts        (OpenRouter integration)
│   │   ├── tools.ts               (SSH tool wrappers)
│   │   ├── graph.ts               (LangGraph state machine)
│   │   └── error-handler.ts       (Retry logic, cost tracking)
│   ├── durable-objects/
│   │   └── BanditAgentDO.ts       (Durable Object implementation)
│   ├── storage/
│   │   └── run-storage.ts         (DO/D1/R2 storage layer)
│   └── websocket/
│       └── agent-events.ts        (Event handlers)
├── app/api/agent/[runId]/
│   ├── route.ts                   (HTTP API routes)
│   └── ws/
│       └── route.ts               (WebSocket route)
├── components/
│   ├── agent-control-panel.tsx    (Control panel UI)
│   └── terminal-chat-interface.tsx (Enhanced terminal)
├── hooks/
│   └── useAgentWebSocket.ts       (WebSocket React hook)
└── types/
    └── env.d.ts                   (Environment types)

🎯 How to Use

1. Local Development

cd bandit-runner-app
pnpm install
pnpm dev

2. Configure SSH Proxy

Build and deploy the SSH proxy service (see SSH-PROXY-README.md), then update:

export SSH_PROXY_URL=https://your-proxy.fly.dev

3. Set API Key

export OPENROUTER_API_KEY=sk-or-...

4. Start a Run

  1. Open http://localhost:3000
  2. Select a model (e.g., GPT-4o Mini)
  3. Choose level range (e.g., 0-5)
  4. Click START
  5. Watch the agent work in real-time!

5. Manual Intervention

  • Click PAUSE to stop the agent
  • Type commands in the terminal (left pane)
  • Message the agent in chat (right pane)
  • Click RESUME to continue

🏗️ Architecture Highlights

Execution Flow

User clicks START
    ↓
POST /api/agent/{runId}/start
    ↓
Durable Object spawned/retrieved
    ↓
LangGraph state machine initialized
    ↓
WebSocket connection established
    ↓
Graph executes: plan → execute → validate → advance
    ↓
Events streamed to UI in real-time
    ↓
State checkpointed in DO storage
    ↓
On completion: metadata saved to D1, logs to R2

WebSocket Event Flow

Durable Object
    ↓ (WebSocket)
API Route /ws
    ↓
useAgentWebSocket hook
    ↓ (handleAgentEvent)
Terminal/Chat UI updates

State Persistence

Active State: Durable Object (in-memory)
Checkpoints: Durable Object storage
Metadata: D1 Database (when configured)
Logs: R2 Bucket (when configured)

🎨 UI Features

  • Retro Terminal Aesthetic: Scan lines, grid patterns, CRT-style
  • Dual Panels: Terminal (left) + Agent Chat (right)
  • Real-time Updates: WebSocket streaming
  • Status Indicators: Connection, run state, level progress
  • Model Selection: 10+ LLM models via OpenRouter
  • Manual Control: Pause, resume, manual commands
  • Keyboard Navigation: Ctrl+K/J panel switching, arrow keys for history

🔐 Security

  • SSH target hardcoded to bandit.labs.overthewire.org:2220
  • Command allowlist enforcement
  • Password redaction in logs
  • R2 encryption for sensitive data
  • Rate limiting (to be implemented)
  • Automatic cleanup of stale runs

📊 Next Steps

  1. Deploy SSH Proxy - Build from SSH-PROXY-README.md
  2. Test Integration - Run end-to-end test with a simple level
  3. Refine LangGraph - Ensure Workers compatibility
  4. Add D1/R2 - Set up persistent storage
  5. Production Deploy - Deploy to Cloudflare Workers
  6. Monitor & Iterate - Track performance, costs, success rates

🎉 What's Amazing

  • Full LangGraph.js in Cloudflare Durable Objects
  • Multi-LLM Support via OpenRouter (10+ models)
  • Beautiful UI with retro terminal aesthetic
  • Real-time Streaming via WebSocket
  • Pause/Resume with state checkpointing
  • Manual Intervention for debugging
  • Extensible architecture for future features

🙏 Acknowledgments

  • Built on Next.js, OpenNext, Cloudflare Workers
  • Powered by LangGraph.js and LangChain
  • UI components from shadcn/ui
  • Inspired by the OverTheWire Bandit wargame