5.9 KiB
5.9 KiB
| title | slug | description | keywords | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Docker | /install/docker | Jan is a ChatGPT-alternative that runs on your own computer, with a local API server. |
|
Installing Jan using Docker
Pre-requisites
:::note
Supported OS: Linux, WSL2 Docker
:::
- Docker Engine and Docker Compose are required to run Jan in Docker mode. Follow the instructions below to get started with Docker Engine on Ubuntu.
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh ./get-docker.sh --dry-run
- If you intend to run Jan in GPU mode, you need to install
nvidia-driverandnvidia-docker2. Follow the instruction here for installation.
Run Jan in Docker Mode
| Docker compose Profile | Description |
|---|---|
cpu-fs |
Run Jan in CPU mode with default file system |
cpu-s3fs |
Run Jan in CPU mode with S3 file system |
gpu-fs |
Run Jan in GPU mode with default file system |
gpu-s3fs |
Run Jan in GPU mode with S3 file system |
| Environment Variable | Description |
|---|---|
S3_BUCKET_NAME |
S3 bucket name - leave blank for default file system |
AWS_ACCESS_KEY_ID |
AWS access key ID - leave blank for default file system |
AWS_SECRET_ACCESS_KEY |
AWS secret access key - leave blank for default file system |
AWS_ENDPOINT |
AWS endpoint URL - leave blank for default file system |
AWS_REGION |
AWS region - leave blank for default file system |
API_BASE_URL |
Jan Server URL, please modify it as your public ip address or domain name default http://localhost:1377 |
-
Option 1: Run Jan in CPU mode
# cpu mode with default file system docker compose --profile cpu-fs up -d # cpu mode with S3 file system docker compose --profile cpu-s3fs up -d -
Option 2: Run Jan in GPU mode
- Step 1: Check CUDA compatibility with your NVIDIA driver by running
nvidia-smiand check the CUDA version in the output
nvidia-smi # Output +---------------------------------------------------------------------------------------+ | NVIDIA-SMI 531.18 Driver Version: 531.18 CUDA Version: 12.1 | |-----------------------------------------+----------------------+----------------------+ | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+======================+======================| | 0 NVIDIA GeForce RTX 4070 Ti WDDM | 00000000:01:00.0 On | N/A | | 0% 44C P8 16W / 285W| 1481MiB / 12282MiB | 2% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 1 NVIDIA GeForce GTX 1660 Ti WDDM | 00000000:02:00.0 Off | N/A | | 0% 49C P8 14W / 120W| 0MiB / 6144MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 2 NVIDIA GeForce GTX 1660 Ti WDDM | 00000000:05:00.0 Off | N/A | | 29% 38C P8 11W / 120W| 0MiB / 6144MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ +---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================|-
Step 2: Visit NVIDIA NGC Catalog and find the smallest minor version of image tag that matches your CUDA version (e.g., 12.1 -> 12.1.0)
-
Step 3: Update the
Dockerfile.gpuline number 5 with the latest minor version of the image tag from step 2 (e.g. changeFROM nvidia/cuda:12.2.0-runtime-ubuntu22.04 AS basetoFROM nvidia/cuda:12.1.0-runtime-ubuntu22.04 AS base) -
Step 4: Run command to start Jan in GPU mode
# GPU mode with default file system docker compose --profile gpu-fs up -d # GPU mode with S3 file system docker compose --profile gpu-s3fs up -d
- Step 1: Check CUDA compatibility with your NVIDIA driver by running
This will start the web server and you can access Jan at http://localhost:3000.
:::warning
- RAG feature is not supported in Docker mode with s3fs yet.
:::