Add BMAD, Claude, Cursor, and OpenCode configuration directories along with AGENTS.md documentation. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
6.0 KiB
6.0 KiB
Subagent Template
This template is used to generate specialized subagent files.
Template Structure
---
description: "{specific_task_description}"
mode: subagent
temperature: 0.1
---
# {Subagent Name}
<context>
<specialist_domain>{area_of_expertise}</specialist_domain>
<task_scope>{specific_task_this_agent_completes}</task_scope>
<integration>{how_this_fits_in_larger_system}</integration>
</context>
<role>
{Specialist_Type} expert with deep knowledge of {specific_domain}
</role>
<task>
{Specific, measurable objective this agent accomplishes}
</task>
<inputs_required>
<parameter name="{param1}" type="{type}">
{Description of what this parameter is and acceptable values}
</parameter>
<parameter name="{param2}" type="{type}">
{Description of what this parameter is and acceptable values}
</parameter>
{additional parameters as needed}
</inputs_required>
<inputs_forbidden>
<!-- Subagents should never receive these -->
<forbidden>conversation_history</forbidden>
<forbidden>full_system_state</forbidden>
<forbidden>unstructured_context</forbidden>
</inputs_forbidden>
<process_flow>
<step_1>
<action>{First thing to do}</action>
<process>
1. {Substep 1}
2. {Substep 2}
3. {Substep 3}
</process>
<validation>{How to verify this step succeeded}</validation>
<output>{What this step produces}</output>
</step_1>
<step_2>
<action>{Second thing to do}</action>
<process>
1. {Substep 1}
2. {Substep 2}
</process>
<conditions>
<if test="{condition_a}">{Do option A}</if>
<else>{Do option B}</else>
</conditions>
<output>{What this step produces}</output>
</step_2>
<step_3>
<action>{Final thing to do}</action>
<process>
1. {Substep 1}
2. {Substep 2}
</process>
<output>{Final output to return}</output>
</step_3>
</process_flow>
<constraints>
<must>{Always enforce requirement X}</must>
<must>{Always validate parameter Y}</must>
<must_not>{Never make assumptions about Z}</must_not>
<must_not>{Never proceed if critical data is missing}</must_not>
</constraints>
<output_specification>
<format>
```yaml
{Exact structure of output, preferably in YAML or JSON format}
status: "success" | "failure" | "partial"
result:
field1: value
field2: value
metadata:
execution_time: "X.Xs"
warnings: ["warning 1", "warning 2"]
```
</format>
<example>
```yaml
{Concrete example of successful output}
status: "success"
result:
example_field: "example value"
another_field: 42
metadata:
execution_time: "2.3s"
warnings: []
```
</example>
<error_handling>
If something goes wrong, return:
```yaml
status: "failure"
error:
code: "ERROR_CODE"
message: "Human-readable error message"
details: "Specific information about what went wrong"
```
</error_handling>
</output_specification>
<validation_checks>
<pre_execution>
- Verify all required inputs are present
- Validate input formats and types
- Check that any referenced files exist
- Ensure prerequisites are met
</pre_execution>
<post_execution>
- Verify output meets specifications
- Validate any files created or modified
- Ensure no side effects occurred
- Check quality standards are met
</post_execution>
</validation_checks>
<{domain}_principles>
<principle_1>
{Domain-specific principle or best practice}
</principle_1>
<principle_2>
{Another domain-specific principle}
</principle_2>
<principle_3>
{Another domain-specific principle}
</principle_3>
</{domain}_principles>
Customization Points
- Specialist Domain: Define the specific area of expertise
- Task Scope: Clearly articulate what this agent does
- Input Parameters: Define all required inputs with types and descriptions
- Process Flow: Break down the task into clear steps
- Constraints: Add domain-specific must/must_not rules
- Output Format: Define exact output structure (prefer YAML/JSON)
- Validation: Add domain-specific validation checks
- Principles: Include domain-specific best practices
Subagent Types
Research Agent
- Purpose: Gather information from external sources
- Context Level: Level 1 (isolation)
- Inputs: Topic, scope, source constraints
- Outputs: Research summary with citations
Validation Agent
- Purpose: Validate outputs against standards
- Context Level: Level 2 (standards + rules)
- Inputs: Content to validate, validation criteria
- Outputs: Validation score with prioritized feedback
Processing Agent
- Purpose: Transform or process data
- Context Level: Level 1 (task only)
- Inputs: Data to process, transformation rules
- Outputs: Processed data
Generation Agent
- Purpose: Create content or artifacts
- Context Level: Level 2 (templates + standards)
- Inputs: Generation parameters, requirements
- Outputs: Generated content
Integration Agent
- Purpose: Handle external system integrations
- Context Level: Level 1 (task only)
- Inputs: Integration parameters, data to send
- Outputs: Integration result
Validation Criteria
Generated subagents must:
- Define clear, explicit input parameters
- Include step-by-step process flow
- Specify exact output format (preferably YAML/JSON)
- Include pre and post execution validation
- Have clear constraints (must/must_not)
- Be stateless (no conversation history)
- Score 8+/10 on XML optimization criteria
Best Practices
- Single Responsibility: Each subagent should do ONE thing extremely well
- Stateless: Don't maintain state or assume context from previous interactions
- Complete Instructions: Every call must include ALL information needed
- Explicit Output: Define exact output format with examples
- Validation: Validate inputs before processing and outputs before returning
- Error Handling: Handle errors gracefully with clear messages