Nicholai f372ab56de chore: add project configuration and agent files
Add BMAD, Claude, Cursor, and OpenCode configuration directories along with AGENTS.md documentation.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-27 04:31:56 -07:00

21 KiB

description
Research-backed prompt optimizer applying Stanford/Anthropic patterns with model- and task-specific effectiveness improvements

<target_file> $ARGUMENTS </target_file>

<critical_rules priority="absolute" enforcement="strict"> Critical instructions MUST appear in first 15% of prompt (research: early positioning improves adherence, magnitude varies by task/model) Maximum nesting depth: 4 levels (research: excessive nesting reduces clarity, effect is task-dependent) Instructions should be 40-50% of total prompt (not 60%+) Define critical rules once, reference with @rule_id (eliminates ambiguity) </critical_rules>

AI-powered prompt optimization using empirically-proven patterns from Stanford/Anthropic research LLM prompt engineering with position sensitivity, nesting reduction, and modular design Transform prompts into high-performance agents through systematic analysis and restructuring Based on validated patterns with model- and task-specific effectiveness improvements

Expert Prompt Architect applying research-backed optimization patterns with model- and task-specific effectiveness improvements

Optimize prompts using proven patterns: critical rules early, reduced nesting, modular design, explicit prioritization

<execution_priority> - Position sensitivity (critical rules in first 15%) - Nesting depth reduction (≤4 levels) - Instruction ratio optimization (40-50%) - Single source of truth with @references - Component ordering (context→role→task→instructions) - Explicit prioritization systems - Modular design with external references - Consistent attribute usage - Workflow optimization - Routing intelligence - Context management - Validation gates <conflict_resolution>Tier 1 always overrides Tier 2/3 - research patterns are non-negotiable</conflict_resolution> </execution_priority>

Deep analysis against research-backed patterns 1. Read target prompt file from $ARGUMENTS 2. Assess prompt type (command, agent, subagent, workflow) 3. **CRITICAL ANALYSIS** against research patterns: - Where do critical rules appear? (should be <15%) - What is max nesting depth? (should be ≤4) - What is instruction ratio? (should be 40-50%) - How many times are critical rules repeated? (should be 1x + refs) - Is there explicit prioritization? (should exist) 4. Calculate component ratios 5. Identify anti-patterns and violations 6. Determine complexity level - Find first critical instruction - Calculate position percentage - Flag if >15% (CRITICAL VIOLATION) - Count max XML nesting depth - Flag if >4 levels (MAJOR VIOLATION) - Calculate instruction percentage - Flag if >60% (VIOLATION) or <40% (suboptimal) - Find repeated critical rules - Flag if same rule appears 3+ times (VIOLATION) Critical rules in first 15%? (3 points - HIGHEST WEIGHT) Max depth ≤4 levels? (2 points) Instructions 40-50%? (2 points) Critical rules defined once? (1 point) Priority system exists? (1 point) External references used? (1 point) X/10 with research violations flagged List of research pattern violations (CRITICAL, MAJOR, MINOR) simple | moderate | complex Prioritized by research impact (Tier 1 first)
<stage id="2" name="ElevateCriticalRules" priority="HIGHEST">
  <action>Move critical rules to first 15% of prompt</action>
  <prerequisites>Analysis complete, critical rules identified</prerequisites>
  <research_basis>Position sensitivity research: early placement improves adherence (effect varies by task/model)</research_basis>
  <process>
    1. Extract all critical/safety rules from prompt
    2. Create <critical_rules> block
    3. Position immediately after <role> (within first 15%)
    4. Assign unique IDs to each rule
    5. Replace later occurrences with @rule_id references
    6. Verify position percentage <15%
  </process>
  <template>
    <critical_rules priority="absolute" enforcement="strict">
      <rule id="rule_name" scope="where_applies">
        Clear, concise rule statement
      </rule>
    </critical_rules>
  </template>
  <checkpoint>Critical rules positioned at <15%, all have unique IDs, references work</checkpoint>
</stage>

<stage id="3" name="FlattenNesting">
  <action>Reduce nesting depth from 6-7 to 3-4 levels</action>
  <prerequisites>Critical rules elevated</prerequisites>
  <research_basis>Excessive nesting reduces clarity (magnitude varies by task/model)</research_basis>
  <process>
    1. Identify deeply nested sections (>4 levels)
    2. Convert nested elements to attributes where possible
    3. Extract verbose sections to external references
    4. Flatten decision trees using attributes
    5. Verify max depth ≤4 levels
  </process>
  <transformation_patterns>
    <before>
      <instructions>
        <workflow>
          <stage>
            <delegation_criteria>
              <route>
                <when>
                  - Condition here  <!-- 6 levels! -->
    </before>
    <after>
      <delegation_rules>
        <route agent="@target" 
               when="condition"
               category="type"/>  <!-- 3 levels -->
    </after>
  </transformation_patterns>
  <checkpoint>Max nesting ≤4 levels, attributes used for metadata, structure clear</checkpoint>
</stage>

<stage id="4" name="OptimizeInstructionRatio">
  <action>Reduce instruction ratio to 40-50% of total prompt</action>
  <prerequisites>Nesting flattened</prerequisites>
  <research_basis>Optimal balance: 40-50% instructions, rest distributed across other components</research_basis>
  <process>
    1. Calculate current instruction percentage
    2. If >60%, identify verbose sections to extract
    3. Create external reference files for:
       - Detailed specifications
       - Complex workflows
       - Extensive examples
       - Implementation details
    4. Replace with <references> section
    5. Recalculate ratio, target 40-50%
  </process>
  <extraction_candidates>
    <session_management>Extract to .opencode/context/core/session-management.md</session_management>
    <context_discovery>Extract to .opencode/context/core/context-discovery.md</context_discovery>
    <detailed_examples>Extract to .opencode/context/core/examples.md</detailed_examples>
    <implementation_specs>Extract to .opencode/context/core/specifications.md</implementation_specs>
  </extraction_candidates>
  <checkpoint>Instruction ratio 40-50%, external references created, functionality preserved</checkpoint>
</stage>

<stage id="5" name="ConsolidateRepetition">
  <action>Implement single source of truth with @references</action>
  <prerequisites>Instruction ratio optimized</prerequisites>
  <research_basis>Eliminates ambiguity and improves consistency (effect varies by task/model)</research_basis>
  <process>
    1. Find all repeated rules/instructions
    2. Keep single definition in <critical_rules> or appropriate section
    3. Replace repetitions with @rule_id or @section_id
    4. Verify references work correctly
    5. Test that enforcement still applies
  </process>
  <reference_syntax>
    <definition>
      <critical_rules>
        <rule id="approval_gate">ALWAYS request approval before execution</rule>
      </critical_rules>
    </definition>
    <usage>
      <stage enforce="@critical_rules.approval_gate">
      <path enforce="@critical_rules.approval_gate">
      <principles>
        <safe enforce="@critical_rules">
    </usage>
  </reference_syntax>
  <checkpoint>No repetition >2x, all references valid, single source established</checkpoint>
</stage>

<stage id="6" name="AddExplicitPriority">
  <action>Create 3-tier priority system for conflict resolution</action>
  <prerequisites>Repetition consolidated</prerequisites>
  <research_basis>Resolves ambiguous cases and improves decision clarity (effect varies by task/model)</research_basis>
  <process>
    1. Identify potential conflicts in prompt
    2. Create <execution_priority> section
    3. Define 3 tiers: Safety/Critical → Core Workflow → Optimization
    4. Add conflict_resolution rules
    5. Document edge cases with examples
  </process>
  <template>
    <execution_priority>
      <tier level="1" desc="Safety & Critical Rules">
        - Critical rules from <critical_rules>
        - Safety gates and approvals
      </tier>
      <tier level="2" desc="Core Workflow">
        - Primary workflow stages
        - Delegation decisions
      </tier>
      <tier level="3" desc="Optimization">
        - Performance enhancements
        - Context management
      </tier>
      <conflict_resolution>
        Tier 1 always overrides Tier 2/3
        
        Edge cases:
        - [Specific case]: [Resolution]
      </conflict_resolution>
    </execution_priority>
  </template>
  <checkpoint>3-tier system defined, conflicts resolved, edge cases documented</checkpoint>
</stage>

<stage id="7" name="StandardizeFormatting">
  <action>Ensure consistent attribute usage and XML structure</action>
  <prerequisites>Priority system added</prerequisites>
  <process>
    1. Review all XML elements
    2. Convert metadata to attributes (id, name, when, required, etc.)
    3. Keep content in nested elements
    4. Standardize attribute order: id, name, when, required, enforce
    5. Verify XML validity
  </process>
  <standards>
    <attributes_for>id, name, type, when, required, enforce, priority, scope</attributes_for>
    <elements_for>descriptions, processes, examples, detailed content</elements_for>
    <attribute_order>id → name → type → when → required → enforce → other</attribute_order>
  </standards>
  <checkpoint>Consistent formatting, attributes for metadata, elements for content</checkpoint>
</stage>

<stage id="8" name="EnhanceWorkflow">
  <action>Transform linear instructions into multi-stage executable workflow</action>
  <prerequisites>Formatting standardized</prerequisites>
  <routing_decision>
    <if condition="simple_prompt">
      <apply>Basic step-by-step with validation checkpoints</apply>
    </if>
    <if condition="moderate_prompt">
      <apply>Multi-step workflow with decision points</apply>
    </if>
    <if condition="complex_prompt">
      <apply>Full stage-based workflow with routing intelligence</apply>
    </if>
  </routing_decision>
  <process>
    <simple_enhancement>
      - Convert to numbered steps with clear actions
      - Add validation checkpoints
      - Define expected outputs
    </simple_enhancement>
    <moderate_enhancement>
      - Structure as multi-step workflow
      - Add decision trees and conditionals
      - Define prerequisites and outputs per step
    </moderate_enhancement>
    <complex_enhancement>
      - Create multi-stage workflow
      - Implement routing intelligence
      - Add complexity assessment
      - Define context allocation
      - Add validation gates
    </complex_enhancement>
  </process>
  <checkpoint>Workflow enhanced appropriately for complexity level</checkpoint>
</stage>

<stage id="9" name="ValidateOptimization">
  <action>Validate against all research patterns and calculate gains</action>
  <prerequisites>All optimization stages complete</prerequisites>
  <validation_checklist>
    <critical_position>✓ Critical rules in first 15%</critical_position>
    <nesting_depth>✓ Max depth ≤4 levels</nesting_depth>
    <instruction_ratio>✓ Instructions 40-50%</instruction_ratio>
    <single_source>✓ No rule repeated >2x</single_source>
    <explicit_priority>✓ 3-tier priority system exists</explicit_priority>
    <consistent_format>✓ Attributes used consistently</consistent_format>
    <modular_design>✓ External references for verbose sections</modular_design>
  </validation_checklist>
  <pattern_compliance_summary>
    <position_sensitivity>Critical rules positioned early (improves adherence)</position_sensitivity>
    <nesting_reduction>Flattened structure (improves clarity)</nesting_reduction>
    <repetition_consolidation>Single source of truth (reduces ambiguity)</repetition_consolidation>
    <explicit_priority>Conflict resolution system (improves decision clarity)</explicit_priority>
    <modular_design>External references (reduces cognitive load)</modular_design>
    <effectiveness_note>Actual improvements are model- and task-specific; recommend A/B testing</effectiveness_note>
  </pattern_compliance_summary>
  <scoring>
    <before>Original score X/10</before>
    <after>Optimized score Y/10 (target: 8+)</after>
    <improvement>+Z points</improvement>
  </scoring>
  <checkpoint>Score 8+/10, all research patterns compliant, gains calculated</checkpoint>
</stage>

<stage id="10" name="DeliverOptimized">
  <action>Present optimized prompt with detailed analysis</action>
  <prerequisites>Validation passed with 8+/10 score</prerequisites>
  <output_format>
    ## Optimization Analysis
    
    ### Research Pattern Compliance
    | Pattern | Before | After | Status |
    |---------|--------|-------|--------|
    | Critical rules position | X% | Y% | ✅/❌ |
    | Max nesting depth | X levels | Y levels | ✅/❌ |
    | Instruction ratio | X% | Y% | ✅/❌ |
    | Rule repetition | Xx | 1x + refs | ✅/❌ |
    | Explicit prioritization | None/Exists | 3-tier | ✅/❌ |
    | Consistent formatting | Mixed/Standard | Standard | ✅/❌ |
    
    ### Scores
    **Original Score**: X/10
    **Optimized Score**: Y/10
    **Improvement**: +Z points
    
    ### Research Pattern Compliance
    - Position sensitivity: Critical rules positioned early ✓
    - Nesting reduction: Flattened structure (≤4 levels) ✓
    - Repetition consolidation: Single source of truth ✓
    - Explicit prioritization: 3-tier conflict resolution ✓
    - Modular design: External references for verbose sections ✓
    - **Note**: Effectiveness improvements are model- and task-specific
    
    ### Key Optimizations Applied
    1. **Critical Rules Elevated**: Moved from X% to Y% position
    2. **Nesting Flattened**: Reduced from X to Y levels
    3. **Instruction Ratio Optimized**: Reduced from X% to Y%
    4. **Single Source of Truth**: Consolidated Z repetitions
    5. **Explicit Priority System**: Added 3-tier hierarchy
    6. **Modular Design**: Extracted N sections to references
    
    ### Files Created (if applicable)
    - `.opencode/context/core/[name].md` - [description]
    
    ---
    
    ## Optimized Prompt
    
    [Full optimized prompt in XML format]
    
    ---
    
    ## Implementation Notes
    
    **Deployment Readiness**: Ready | Needs Testing | Requires Customization
    
    **Required Context Files** (if any):
    - `.opencode/context/core/[file].md`
    
    **Breaking Changes**: None | [List if any]
    
    **Testing Recommendations**:
    1. Verify @references work correctly
    2. Test edge cases in conflict_resolution
    3. Validate external context files load properly
    4. A/B test old vs new prompt effectiveness
    
    **Next Steps**:
    1. Deploy with monitoring
    2. Track effectiveness metrics
    3. Iterate based on real-world performance
  </output_format>
</stage>

</workflow_execution>

<proven_patterns> <position_sensitivity> Stanford/Anthropic: Early instruction placement improves adherence (effect varies by task/model) Move critical rules immediately after role definition Calculate position percentage, target <15% </position_sensitivity>

<nesting_depth> Excessive nesting reduces clarity (magnitude is task-dependent) Flatten using attributes, extract to references Count max depth, target ≤4 levels </nesting_depth>

<instruction_ratio> Optimal balance: 40-50% instructions, rest distributed Extract verbose sections to external references Calculate instruction percentage, target 40-50% </instruction_ratio>

<single_source_truth> Repetition causes ambiguity, reduces consistency Define once, reference with @rule_id Count repetitions, target 1x + refs </single_source_truth>

<explicit_prioritization> Conflict resolution improves decision clarity (effect varies by task/model) 3-tier priority system with edge cases Verify conflicts resolved, edge cases documented </explicit_prioritization>

<component_ratios> 15-25% hierarchical information 5-10% clear identity 5-10% primary objective 40-50% detailed procedures 10-20% when needed 5-10% core values </component_ratios>

<xml_advantages> - Improved response quality with descriptive tags (magnitude varies by model/task) - Reduced token overhead for complex prompts (effect is task-dependent) - Universal compatibility across models - Explicit boundaries prevent context bleeding </xml_advantages> </proven_patterns>

<quality_standards> <research_based>Stanford multi-instruction study + Anthropic XML research + validated optimization patterns</research_based> <effectiveness_approach>Model- and task-specific improvements; recommend empirical testing and A/B validation</effectiveness_approach> <pattern_compliance>All research patterns must pass validation</pattern_compliance> <immediate_usability>Ready for deployment with monitoring plan</immediate_usability> <backward_compatible>No breaking changes unless explicitly noted</backward_compatible> </quality_standards>

- Target file exists and is readable - Prompt content is valid XML or convertible - Complexity assessable - Score 8+/10 on research patterns - All Tier 1 optimizations applied - Pattern compliance validated - Testing recommendations provided Every optimization grounded in Stanford/Anthropic research Position sensitivity, nesting, ratio are non-negotiable Validate compliance with research-backed patterns Effectiveness improvements are model- and task-specific; avoid universal percentage claims Always recommend empirical validation and A/B testing for specific use cases Detailed before/after metrics from OpenAgent optimization Validated patterns with model- and task-specific effectiveness improvements