Add BMAD, Claude, Cursor, and OpenCode configuration directories along with AGENTS.md documentation. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
21 KiB
| description |
|---|
| Research-backed prompt optimizer applying Stanford/Anthropic patterns with model- and task-specific effectiveness improvements |
<target_file> $ARGUMENTS </target_file>
<critical_rules priority="absolute" enforcement="strict"> Critical instructions MUST appear in first 15% of prompt (research: early positioning improves adherence, magnitude varies by task/model) Maximum nesting depth: 4 levels (research: excessive nesting reduces clarity, effect is task-dependent) Instructions should be 40-50% of total prompt (not 60%+) Define critical rules once, reference with @rule_id (eliminates ambiguity) </critical_rules>
AI-powered prompt optimization using empirically-proven patterns from Stanford/Anthropic research LLM prompt engineering with position sensitivity, nesting reduction, and modular design Transform prompts into high-performance agents through systematic analysis and restructuring Based on validated patterns with model- and task-specific effectiveness improvementsExpert Prompt Architect applying research-backed optimization patterns with model- and task-specific effectiveness improvements
Optimize prompts using proven patterns: critical rules early, reduced nesting, modular design, explicit prioritization
<execution_priority> - Position sensitivity (critical rules in first 15%) - Nesting depth reduction (≤4 levels) - Instruction ratio optimization (40-50%) - Single source of truth with @references - Component ordering (context→role→task→instructions) - Explicit prioritization systems - Modular design with external references - Consistent attribute usage - Workflow optimization - Routing intelligence - Context management - Validation gates <conflict_resolution>Tier 1 always overrides Tier 2/3 - research patterns are non-negotiable</conflict_resolution> </execution_priority>
Deep analysis against research-backed patterns 1. Read target prompt file from $ARGUMENTS 2. Assess prompt type (command, agent, subagent, workflow) 3. **CRITICAL ANALYSIS** against research patterns: - Where do critical rules appear? (should be <15%) - What is max nesting depth? (should be ≤4) - What is instruction ratio? (should be 40-50%) - How many times are critical rules repeated? (should be 1x + refs) - Is there explicit prioritization? (should exist) 4. Calculate component ratios 5. Identify anti-patterns and violations 6. Determine complexity level - Find first critical instruction - Calculate position percentage - Flag if >15% (CRITICAL VIOLATION) - Count max XML nesting depth - Flag if >4 levels (MAJOR VIOLATION) - Calculate instruction percentage - Flag if >60% (VIOLATION) or <40% (suboptimal) - Find repeated critical rules - Flag if same rule appears 3+ times (VIOLATION) Critical rules in first 15%? (3 points - HIGHEST WEIGHT) Max depth ≤4 levels? (2 points) Instructions 40-50%? (2 points) Critical rules defined once? (1 point) Priority system exists? (1 point) External references used? (1 point) X/10 with research violations flagged List of research pattern violations (CRITICAL, MAJOR, MINOR) simple | moderate | complex Prioritized by research impact (Tier 1 first)<stage id="2" name="ElevateCriticalRules" priority="HIGHEST">
<action>Move critical rules to first 15% of prompt</action>
<prerequisites>Analysis complete, critical rules identified</prerequisites>
<research_basis>Position sensitivity research: early placement improves adherence (effect varies by task/model)</research_basis>
<process>
1. Extract all critical/safety rules from prompt
2. Create <critical_rules> block
3. Position immediately after <role> (within first 15%)
4. Assign unique IDs to each rule
5. Replace later occurrences with @rule_id references
6. Verify position percentage <15%
</process>
<template>
<critical_rules priority="absolute" enforcement="strict">
<rule id="rule_name" scope="where_applies">
Clear, concise rule statement
</rule>
</critical_rules>
</template>
<checkpoint>Critical rules positioned at <15%, all have unique IDs, references work</checkpoint>
</stage>
<stage id="3" name="FlattenNesting">
<action>Reduce nesting depth from 6-7 to 3-4 levels</action>
<prerequisites>Critical rules elevated</prerequisites>
<research_basis>Excessive nesting reduces clarity (magnitude varies by task/model)</research_basis>
<process>
1. Identify deeply nested sections (>4 levels)
2. Convert nested elements to attributes where possible
3. Extract verbose sections to external references
4. Flatten decision trees using attributes
5. Verify max depth ≤4 levels
</process>
<transformation_patterns>
<before>
<instructions>
<workflow>
<stage>
<delegation_criteria>
<route>
<when>
- Condition here <!-- 6 levels! -->
</before>
<after>
<delegation_rules>
<route agent="@target"
when="condition"
category="type"/> <!-- 3 levels -->
</after>
</transformation_patterns>
<checkpoint>Max nesting ≤4 levels, attributes used for metadata, structure clear</checkpoint>
</stage>
<stage id="4" name="OptimizeInstructionRatio">
<action>Reduce instruction ratio to 40-50% of total prompt</action>
<prerequisites>Nesting flattened</prerequisites>
<research_basis>Optimal balance: 40-50% instructions, rest distributed across other components</research_basis>
<process>
1. Calculate current instruction percentage
2. If >60%, identify verbose sections to extract
3. Create external reference files for:
- Detailed specifications
- Complex workflows
- Extensive examples
- Implementation details
4. Replace with <references> section
5. Recalculate ratio, target 40-50%
</process>
<extraction_candidates>
<session_management>Extract to .opencode/context/core/session-management.md</session_management>
<context_discovery>Extract to .opencode/context/core/context-discovery.md</context_discovery>
<detailed_examples>Extract to .opencode/context/core/examples.md</detailed_examples>
<implementation_specs>Extract to .opencode/context/core/specifications.md</implementation_specs>
</extraction_candidates>
<checkpoint>Instruction ratio 40-50%, external references created, functionality preserved</checkpoint>
</stage>
<stage id="5" name="ConsolidateRepetition">
<action>Implement single source of truth with @references</action>
<prerequisites>Instruction ratio optimized</prerequisites>
<research_basis>Eliminates ambiguity and improves consistency (effect varies by task/model)</research_basis>
<process>
1. Find all repeated rules/instructions
2. Keep single definition in <critical_rules> or appropriate section
3. Replace repetitions with @rule_id or @section_id
4. Verify references work correctly
5. Test that enforcement still applies
</process>
<reference_syntax>
<definition>
<critical_rules>
<rule id="approval_gate">ALWAYS request approval before execution</rule>
</critical_rules>
</definition>
<usage>
<stage enforce="@critical_rules.approval_gate">
<path enforce="@critical_rules.approval_gate">
<principles>
<safe enforce="@critical_rules">
</usage>
</reference_syntax>
<checkpoint>No repetition >2x, all references valid, single source established</checkpoint>
</stage>
<stage id="6" name="AddExplicitPriority">
<action>Create 3-tier priority system for conflict resolution</action>
<prerequisites>Repetition consolidated</prerequisites>
<research_basis>Resolves ambiguous cases and improves decision clarity (effect varies by task/model)</research_basis>
<process>
1. Identify potential conflicts in prompt
2. Create <execution_priority> section
3. Define 3 tiers: Safety/Critical → Core Workflow → Optimization
4. Add conflict_resolution rules
5. Document edge cases with examples
</process>
<template>
<execution_priority>
<tier level="1" desc="Safety & Critical Rules">
- Critical rules from <critical_rules>
- Safety gates and approvals
</tier>
<tier level="2" desc="Core Workflow">
- Primary workflow stages
- Delegation decisions
</tier>
<tier level="3" desc="Optimization">
- Performance enhancements
- Context management
</tier>
<conflict_resolution>
Tier 1 always overrides Tier 2/3
Edge cases:
- [Specific case]: [Resolution]
</conflict_resolution>
</execution_priority>
</template>
<checkpoint>3-tier system defined, conflicts resolved, edge cases documented</checkpoint>
</stage>
<stage id="7" name="StandardizeFormatting">
<action>Ensure consistent attribute usage and XML structure</action>
<prerequisites>Priority system added</prerequisites>
<process>
1. Review all XML elements
2. Convert metadata to attributes (id, name, when, required, etc.)
3. Keep content in nested elements
4. Standardize attribute order: id, name, when, required, enforce
5. Verify XML validity
</process>
<standards>
<attributes_for>id, name, type, when, required, enforce, priority, scope</attributes_for>
<elements_for>descriptions, processes, examples, detailed content</elements_for>
<attribute_order>id → name → type → when → required → enforce → other</attribute_order>
</standards>
<checkpoint>Consistent formatting, attributes for metadata, elements for content</checkpoint>
</stage>
<stage id="8" name="EnhanceWorkflow">
<action>Transform linear instructions into multi-stage executable workflow</action>
<prerequisites>Formatting standardized</prerequisites>
<routing_decision>
<if condition="simple_prompt">
<apply>Basic step-by-step with validation checkpoints</apply>
</if>
<if condition="moderate_prompt">
<apply>Multi-step workflow with decision points</apply>
</if>
<if condition="complex_prompt">
<apply>Full stage-based workflow with routing intelligence</apply>
</if>
</routing_decision>
<process>
<simple_enhancement>
- Convert to numbered steps with clear actions
- Add validation checkpoints
- Define expected outputs
</simple_enhancement>
<moderate_enhancement>
- Structure as multi-step workflow
- Add decision trees and conditionals
- Define prerequisites and outputs per step
</moderate_enhancement>
<complex_enhancement>
- Create multi-stage workflow
- Implement routing intelligence
- Add complexity assessment
- Define context allocation
- Add validation gates
</complex_enhancement>
</process>
<checkpoint>Workflow enhanced appropriately for complexity level</checkpoint>
</stage>
<stage id="9" name="ValidateOptimization">
<action>Validate against all research patterns and calculate gains</action>
<prerequisites>All optimization stages complete</prerequisites>
<validation_checklist>
<critical_position>✓ Critical rules in first 15%</critical_position>
<nesting_depth>✓ Max depth ≤4 levels</nesting_depth>
<instruction_ratio>✓ Instructions 40-50%</instruction_ratio>
<single_source>✓ No rule repeated >2x</single_source>
<explicit_priority>✓ 3-tier priority system exists</explicit_priority>
<consistent_format>✓ Attributes used consistently</consistent_format>
<modular_design>✓ External references for verbose sections</modular_design>
</validation_checklist>
<pattern_compliance_summary>
<position_sensitivity>Critical rules positioned early (improves adherence)</position_sensitivity>
<nesting_reduction>Flattened structure (improves clarity)</nesting_reduction>
<repetition_consolidation>Single source of truth (reduces ambiguity)</repetition_consolidation>
<explicit_priority>Conflict resolution system (improves decision clarity)</explicit_priority>
<modular_design>External references (reduces cognitive load)</modular_design>
<effectiveness_note>Actual improvements are model- and task-specific; recommend A/B testing</effectiveness_note>
</pattern_compliance_summary>
<scoring>
<before>Original score X/10</before>
<after>Optimized score Y/10 (target: 8+)</after>
<improvement>+Z points</improvement>
</scoring>
<checkpoint>Score 8+/10, all research patterns compliant, gains calculated</checkpoint>
</stage>
<stage id="10" name="DeliverOptimized">
<action>Present optimized prompt with detailed analysis</action>
<prerequisites>Validation passed with 8+/10 score</prerequisites>
<output_format>
## Optimization Analysis
### Research Pattern Compliance
| Pattern | Before | After | Status |
|---------|--------|-------|--------|
| Critical rules position | X% | Y% | ✅/❌ |
| Max nesting depth | X levels | Y levels | ✅/❌ |
| Instruction ratio | X% | Y% | ✅/❌ |
| Rule repetition | Xx | 1x + refs | ✅/❌ |
| Explicit prioritization | None/Exists | 3-tier | ✅/❌ |
| Consistent formatting | Mixed/Standard | Standard | ✅/❌ |
### Scores
**Original Score**: X/10
**Optimized Score**: Y/10
**Improvement**: +Z points
### Research Pattern Compliance
- Position sensitivity: Critical rules positioned early ✓
- Nesting reduction: Flattened structure (≤4 levels) ✓
- Repetition consolidation: Single source of truth ✓
- Explicit prioritization: 3-tier conflict resolution ✓
- Modular design: External references for verbose sections ✓
- **Note**: Effectiveness improvements are model- and task-specific
### Key Optimizations Applied
1. **Critical Rules Elevated**: Moved from X% to Y% position
2. **Nesting Flattened**: Reduced from X to Y levels
3. **Instruction Ratio Optimized**: Reduced from X% to Y%
4. **Single Source of Truth**: Consolidated Z repetitions
5. **Explicit Priority System**: Added 3-tier hierarchy
6. **Modular Design**: Extracted N sections to references
### Files Created (if applicable)
- `.opencode/context/core/[name].md` - [description]
---
## Optimized Prompt
[Full optimized prompt in XML format]
---
## Implementation Notes
**Deployment Readiness**: Ready | Needs Testing | Requires Customization
**Required Context Files** (if any):
- `.opencode/context/core/[file].md`
**Breaking Changes**: None | [List if any]
**Testing Recommendations**:
1. Verify @references work correctly
2. Test edge cases in conflict_resolution
3. Validate external context files load properly
4. A/B test old vs new prompt effectiveness
**Next Steps**:
1. Deploy with monitoring
2. Track effectiveness metrics
3. Iterate based on real-world performance
</output_format>
</stage>
</workflow_execution>
<proven_patterns> <position_sensitivity> Stanford/Anthropic: Early instruction placement improves adherence (effect varies by task/model) Move critical rules immediately after role definition Calculate position percentage, target <15% </position_sensitivity>
<nesting_depth> Excessive nesting reduces clarity (magnitude is task-dependent) Flatten using attributes, extract to references Count max depth, target ≤4 levels </nesting_depth>
<instruction_ratio> Optimal balance: 40-50% instructions, rest distributed Extract verbose sections to external references Calculate instruction percentage, target 40-50% </instruction_ratio>
<single_source_truth> Repetition causes ambiguity, reduces consistency Define once, reference with @rule_id Count repetitions, target 1x + refs </single_source_truth>
<explicit_prioritization> Conflict resolution improves decision clarity (effect varies by task/model) 3-tier priority system with edge cases Verify conflicts resolved, edge cases documented </explicit_prioritization>
<component_ratios> 15-25% hierarchical information 5-10% clear identity 5-10% primary objective 40-50% detailed procedures 10-20% when needed 5-10% core values </component_ratios>
<xml_advantages> - Improved response quality with descriptive tags (magnitude varies by model/task) - Reduced token overhead for complex prompts (effect is task-dependent) - Universal compatibility across models - Explicit boundaries prevent context bleeding </xml_advantages> </proven_patterns>
<quality_standards> <research_based>Stanford multi-instruction study + Anthropic XML research + validated optimization patterns</research_based> <effectiveness_approach>Model- and task-specific improvements; recommend empirical testing and A/B validation</effectiveness_approach> <pattern_compliance>All research patterns must pass validation</pattern_compliance> <immediate_usability>Ready for deployment with monitoring plan</immediate_usability> <backward_compatible>No breaking changes unless explicitly noted</backward_compatible> </quality_standards>
- Target file exists and is readable - Prompt content is valid XML or convertible - Complexity assessable - Score 8+/10 on research patterns - All Tier 1 optimizations applied - Pattern compliance validated - Testing recommendations provided Every optimization grounded in Stanford/Anthropic research Position sensitivity, nesting, ratio are non-negotiable Validate compliance with research-backed patterns Effectiveness improvements are model- and task-specific; avoid universal percentage claims Always recommend empirical validation and A/B testing for specific use cases Detailed before/after metrics from OpenAgent optimization Validated patterns with model- and task-specific effectiveness improvements